Explainable Machine Learning Framework for Distributed Denial-of-Service (DDoS) Attack Detection using Comparative Evaluation and SHAP Analysis
Submitted : 2025-11-07, Published : 2025-12-22.
Abstract
Keywords
Full Text:
PDFReferences
R. M. A. Haseeb-ur-rehman et al., “High-speed network DDoS attack detection: A survey,” Sensors, vol. 23, no. 15, p. 6850, Aug. 2023. https://doi.org/10.3390/s23156850
S. Mehmood, R. Amin, J. Mustafa, M. Hussain, F. S. Alsubaei, and M. D. Zakaria, “Distributed denial of service (DDoS) attack detection in SDN using optimizer-equipped CNN-MLP,” PLOS ONE, vol. 20, no. 1, p. e0312425, Jan. 2025. https://doi.org/10.1371/journal.pone.0312425
S. A. Khan, I. H. Syed, and J. I. Jawaid Iqbal, “From signatures to AI: A comprehensive review of DDoS detection strategies in IoT and SDN,” International Journal on Robotics, Automation and Sciences, vol. 7, no. 1, pp. 19–26, 2025. https://doi.org/10.33093/ijoras.2025.7.1.3
S. Abiramasundari and V. Ramaswamy, “Distributed denial-of-service (DDoS) attack detection using supervised machine learning algorithms,” Scientific Reports, vol. 15, no. 1, p. 13098, Apr. 2025. https://doi.org/10.1038/s41598-024-84879-y
U. Ahmed et al., “Hybrid bagging and boosting with SHAP-based feature selection for enhanced predictive modeling in intrusion detection systems,” Scientific Reports, vol. 14, no. 1, p. 30532, Dec. 2024. https://doi.org/10.1038/s41598-024-81151-1
A. Alzu’bi, A. Albashayreh, A. Abuarqoub, and M. A. M. Alfawair, “Explainable AI-based DDoS attacks classification using deep transfer learning,” Computers, Materials and Continua, vol. 80, no. 3, pp. 3785–3802, 2024. https://doi.org/10.32604/cmc.2024.052599
M. El-Geneedy, H. El-Din Moustafa, H. Khater, S. Abd-Elsamee, and S. A. Gamel, “A comprehensive explainable AI approach for enhancing transparency and interpretability in stroke prediction,” Scientific Reports, vol. 15, no. 1, p. 26048, Jul. 2025. https://doi.org/10.1038/s41598-025-11263-9
C. S. Kalutharage, X. Liu, C. Chrysoulas, N. Pitropakis, and P. Papadopoulos, “Explainable AI-based DDoS attack identification method for IoT networks,” Computers, vol. 12, no. 2, p. 32, Feb. 2023. https://doi.org/10.3390/computers12020032
P. Hermosilla, S. Berríos, and H. Allende-Cid, “Explainable AI for forensic analysis: A comparative study of SHAP and LIME in intrusion detection models,” Applied Sciences, vol. 15, no. 13, p. 7329, Jun. 2025. https://doi.org/10.3390/app15137329
C. Cynthia, D. Ghosh, and G. K. Kamath, “Detection of DDoS attacks using SHAP-based feature reduction,” International Journal of Machine Learning, vol. 13, no. 4, pp. 173–180, 2023. https://doi.org/10.18178/ijml.2023.13.4.1147
Y. Wei, J. Jang-Jaccard, A. Singh, F. Sabrina, and S. Camtepe, “Classification and explanation of distributed denial-of-service (DDoS) attack detection using machine learning and Shapley additive explanation (SHAP) methods,” arXiv:2306.17190, Jun. 2023. https://doi.org/10.48550/arXiv.2306.17190
F. Charmet et al., “Explainable artificial intelligence for cybersecurity: A literature survey,” Annals of Telecommunications, vol. 77, no. 11–12, pp. 789–812, Dec. 2022. https://doi.org/10.1007/s12243-022-00926-7
I. H. Sarker, H. Janicke, A. Mohsin, A. Gill, and L. Maglaras, “Explainable AI for cybersecurity automation, intelligence and trustworthiness in digital twin: Methods, taxonomy, challenges and prospects,” ICT Express, vol. 10, no. 4, pp. 935–958, Aug. 2024. https://doi.org/10.1016/j.icte.2024.05.007
S.-R. Chen, S.-J. Chen, and W.-B. Hsieh, “Enhancing machine-learning-based DDoS detection through hyperparameter optimization,” Electronics, vol. 14, no. 16, p. 3319, Aug. 2025. https://doi.org/10.3390/electronics14163319
S. Wali, Y. A. Farrukh, and I. Khan, “Explainable AI and random forest-based reliable intrusion detection system,” Computers & Security, vol. 157, p. 104542, Oct. 2025. https://doi.org/10.1016/j.cose.2025.104542
D. V. Hernandez, Y.-K. Lai, and H. T. N. Ignatius, “Real-time DDoS detection in high-speed networks: A deep learning approach with multivariate time series,” Electronics, vol. 14, no. 13, p. 2673, Jan. 2025. https://doi.org/10.3390/electronics14132673
F. L. Becerra-Suarez, I. Fernández-Roman, and M. G. Forero, “Improvement of distributed denial of service attack detection through machine learning and data processing,” Mathematics, vol. 12, no. 9, p. 1294, Jan. 2024. https://doi.org/10.3390/math12091294
N. Pandey and P. K. Mishra, “Detection of DDoS attack in IoT traffic using ensemble machine learning techniques,” Network and Heterogeneous Media, vol. 18, no. 4, pp. 1393–1409, 2023. https://doi.org/10.3934/nhm.2023061
S. Satpathy, U. Tripathy, and P. K. Swain, “Cloud-based DDoS detection using hybrid feature selection with deep reinforcement learning,” Scientific Reports, vol. 15, no. 1, p. 36546, Oct. 2025. https://doi.org/10.1038/s41598-025-18857-3
H. Kim, D. Ham, and K.-S. Moon, “Adaptive sampling framework for imbalanced DDoS traffic classification,” Sensors, vol. 25, no. 13, p. 3932, Jun. 2025. https://doi.org/10.3390/s25133932
M. S. Raza, M. N. A. Sheikh, I.-S. Hwang, and M. S. Ab-Rahman, “Feature-selection-based DDoS attack detection using AI algorithms,” Telecom, vol. 5, no. 2, pp. 333–346, Jun. 2024. https://doi.org/10.3390/telecom5020017
M. S. Sawah, H. Elmannai, A. A. El-Bary, K. Lotfy, and O. E. Sheta, “Distributed denial of service (DDoS) classification based on random forest model with backward elimination and grid search algorithms,” Scientific Reports, vol. 15, no. 1, p. 19063, May 2025. https://doi.org/10.1038/s41598-025-03868-x
K. K. Napa, R. Govindarajan, S. Sathya, J. S. Murugan, and B. K. P. Vijayammal, “Comparative analysis of explainable machine learning models for cardiovascular risk stratification using clinical data and Shapley additive explanations,” Intelligent-Based Medicine, vol. 12, p. 100286, Jan. 2025. https://doi.org/10.1016/j.ibmed.2025.100286
L. C. Nnadi, Y. Watanobe, M. M. Rahman, and A. M. John-Otumu, “Prediction of students’ adaptability using explainable AI in educational machine learning models,” Applied Sciences, vol. 14, no. 12, p. 5141, Jan. 2024. https://doi.org/10.3390/app14125141
T. E. Ali, Y.-W. Chong, S. Manickam, M. N. Yusoff, K.-L. A. Yau, and A. D. Zoltan, “A stacking ensemble model with enhanced feature selection for distributed denial-of-service detection in software-defined networks,” Engineering, Technology and Applied Science Research, vol. 15, no. 1, pp. 19232–19245, Feb. 2025. https://doi.org/10.48084/etasr.8976
S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis in machine-learning-based science,” Patterns, vol. 4, no. 9, p. 100804, Sep. 2023. https://doi.org/10.1016/j.patter.2023.100804
E. Lopez, G. Gorla, J. Etxebarria-Elezgarai, J. M. Amigo, and A. Seifert, “The importance of choosing a proper validation strategy in predictive models. Part 2: Recipes for avoiding overfitting,” Analytica Chimica Acta, p. 344838, Nov. 2025. https://doi.org/10.1016/j.aca.2025.344838
A. H. Adhab et al., “Application of robust hybrid tree-based machine learning methods in accurate prediction of underground rock saturation exponent,” Measurement, vol. 255, p. 117916, Nov. 2025. https://doi.org/10.1016/j.measurement.2025.117916
Ismail et al., “A machine learning-based classification and prediction technique for DDoS attacks,” IEEE Access, vol. 10, pp. 21443–21454, 2022. https://doi.org/10.1109/ACCESS.2022.3152577
J. Y.-L. Chan et al., “Mitigating the multicollinearity problem and its machine learning approach: A review,” Mathematics, vol. 10, no. 8, p. 1283, Apr. 2022. https://doi.org/10.3390/math10081283
H. Lamane, L. Mouhir, R. Moussadek, B. Baghdad, O. Kisi, and A. El Bilali, “Interpreting machine learning models based on SHAP values in predicting suspended sediment concentration,” International Journal of Sediment Research, vol. 40, no. 1, pp. 91–107, Feb. 2025. https://doi.org/10.1016/j.ijsrc.2024.10.002
Article Metrics
Abstract view: 44 times
Download  : 7 times

This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.





