Feedforward–Feedback Fuzzy-PID Water Level Control using PLC and Node-RED IoT

Adhitya Sumardi Sunarya, Fitria Suryatini, Nuryanti Nuryanti, Abdur Rohman Harist M, Gailan Anaisabury

Submitted : 2025-06-11, Published : 2025-07-02.

Abstract

Water level control is vital in industrial processes to maintain operational stability and efficiency, especially against varying disturbances like changes in water inflow and outflow. This research proposes a combined feedforward–feedback control system using a Fuzzy-PID algorithm implemented on an Omron CP1H PLC, integrated with an IoT-based Node-RED monitoring interface. The system is designed to improve response accuracy and disturbance recovery in water level control applications. An experimental method was used to evaluate the performance of the proposed control system against conventional single-feedback control under varied disturbance scenarios. The results indicate that the combined control achieved a lower average steady-state error (0.67%) compared to feedback-only control (1.12%), faster recovery time (3 seconds vs. 6.3 seconds), and no overshoot. The integration of flow sensors as feedforward inputs enabled earlier detection and correction of disturbances before they impacted the water level. Additionally, the Node-RED interface allowed real-time monitoring and remote control, enhancing usability and supporting Industry 4.0 standards. While the system demonstrated improved stability and responsiveness, some oscillations remained due to sensor signal noise, suggesting a need for improved filtering techniques. This study contributes a practical and scalable solution for adaptive water level control, combining intelligent control strategies with IoT capabilities. It offers a foundation for future implementations in dynamic industrial environments that demand high reliability and remote accessibility.

Keywords

PLC; Fuzzy-PID; Node-RED; Water Level Control; Feedforward-Feedback.

Full Text:

PDF

References

S. Yahya, A. R. Al Tahtawi, K. Wijayanto, and B. A. Faizah, “Adaptive Fuzzy-PID Controller for Liquid Flow Control in the Heating Tank System,” Int. J. Integr. Eng., vol. 14, no. 1, pp. 173–180, 2022. http://dx.doi.org/10.30880/ijie.14.01.015

U. M. Nath, C. Dey, and R. K. Mudi, “Desired Characteristic Equation Based PID Controller Tuning for Lag-Dominating Processes with Real-Time Realization on Level Control System,” IEEE Control Syst. Lett., vol. 5, no. 4, pp. 1255–1260, 2021. http://dx.doi.org/10.1109/LCSYS.2020.3030173

L. Ma, H. Sun, and G. Zong, “Anti-disturbance output feedback tracking control for switched stochastic systems with multiple disturbances via mode-dependent average time method,” IEEE Access, vol. 8, pp. 17584–17593, 2020. http://dx.doi.org/10.1109/ACCESS.2020.2964122

J. Shen, B. Kang, Y. Tao, F. Lin, and X. Song, “Study of a Control Algorithm with the Disturbance of Massive Discharge on an Open Channel,” Water (Switzerland), vol. 14, no. 20, 2022. http://dx.doi.org/10.3390/w14203252

P. Lin, Y. Shi, and X. M. Sun, “A Class of Nonlinear Active Disturbance Rejection Loop Filters for Phase-Locked Loop,” IEEE Trans. Ind. Electron., vol. 69, no. 2, pp. 1920–1928, 2022. http://dx.doi.org/10.1109/TIE.2021.3060663

S. Gao, Y. Hou, H. Dong, Y. Yue, and S. Li, “Global nested PID control of strict-feedback nonlinear systems with prescribed output and virtual tracking performance,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 67, no. 2, pp. 325–329, 2020. http://dx.doi.org/10.1109/TCSII.2019.2907141

I. Essamlali, H. Nhaila, and M. El Khaili, “Advances in machine learning and IoT for water quality monitoring: A comprehensive review,” Heliyon, vol. 10, no. 6, p. e27920, 2024. http://dx.doi.org/10.1016/j.heliyon.2024.e27920

A. Don et al., “Feedforward and Feedback DC Motor Control Methods of Control Systems,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 9, pp. 5586–5592, 2020. http://dx.doi.org/10.30534/ijeter/2020/109892020.

T. Chistiakova, T. Wigren, and B. Carlsson, “Combined L2 -Stable feedback and feedforward aeration control in a wastewater treatment plant,” IEEE Trans. Control Syst. Technol., vol. 28, no. 3, pp. 1017–1024, 2020. http://dx.doi.org/10.1109/TCST.2019.2891410

B. Parvat, S. B. Lukare, and S. R. Pandit, “Performance Study of Combined Feedback and Feedforward Control,” no. April, 2023.

K. Suleimenov and T. D. Do, “A Practical Disturbance Rejection Control Scheme for Permanent Magnet Synchronous Motors,” Symmetry (Basel)., vol. 14, no. 9, 2022. http://dx.doi.org/10.3390/sym14091873

Fitria Suryatini, Abyanuddin Salam, and Selena Natasha, “Water Level Control in Coupled Tank System with PLC and IoT-Based PID Method,” Indones. J. Comput. Sci., vol. 13, no. 4, pp. 5165–5181, 2024. http://dx.doi.org/10.33022/ijcs.v13i4.4127

T. Hafeez, L. Xu, and G. McArdle, “Edge intelligence for data handling and predictive maintenance in IIoT,” IEEE Access, vol. 9, pp. 49355–49371, 2021. http://dx.doi.org/10.1109/ACCESS.2021.3069137

M. Saad, M. Alshara, and K. Mustafa, “Fuzzy PID Controller Design for a Coupled Tank Liquid Level Control System,” WSEAS Trans. Syst. Control, vol. 18, pp. 401–408, 2023. http://dx.doi.org/10.37394/23203.2023.18.42

Y. R. Ko and T. H. Kim, “Feedforward plus feedback control of an electro-hydraulic valve system using a proportional control valve,” Actuators, vol. 9, no. 2, pp. 1–14, 2020. http://dx.doi.org/10.3390/act9020045

S. P. D. K. A. S. H. M. A. Ciq. M. J. M. P. Ph.D. Ummul Aiman, M. P. Z. F. Suryadin Hasda, M. P. I. N. T. S. K. M.Kes. Masita, and M. P. M. K. N. A. M.Pd. Meilida Eka Sari, Metodologi Penelitian Kuantitatif. 2022.

V. Shenoy and S. Krishnan Venkata, “An In-Depth Analysis of Liquid Level Measurement Techniques and Performance Evaluation Using Computational Fluid Dynamics,” J. Sensors, vol. 2025, no. 1, 2025. http://dx.doi.org/10.1155/js/4412250

P. H. Huang, J. Kim, P. R. Kumar, J. Rajendran, and P. Enjeti, “Enhancing Cybersecurity for Industrial Control Systems: Innovations in Protecting PLC-Dependent Industrial Infrastructures,” IEEE Internet Things J., vol. 11, no. 22, pp. 36486–36493, 2024. http://dx.doi.org/10.1109/JIOT.2024.3408098

M. Domínguez, R. González-Herbón, J. R. Rodríguez-Ossorio, J. J. Fuertes, M. A. Prada, and A. Morán, “Development of a Remote Industrial Laboratory for Automatic Control based on Node-RED,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17210–17215, 2020. http://dx.doi.org/10.1016/j.ifacol.2020.12.1741

A. H. Embong, L. Asbollah, and S. B. A. Hamid, “Empowering industrial automation labs with IoT: A case study on real-time monitoring and control of induction motors using Siemens PLC and Node-RED,” vol. 18, no. 2, pp. 10004–10016, 2024. http://dx.doi.org/10.15282/jmes.18.2.2024.3.0790

R. J. Hyndman and A. B. Koehler, “and Business Statistics Another Look at Measures of Forecast Accuracy Another look at measures of forecast accuracy,” Int. J. Forecast., vol. 22, no. November, pp. 679–688, 2005. http://dx.doi.org/10.1016/j.ijforecast.2006.03.001

D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. Doyle III, Process Dynamics and Control, 4th ed. Hoboken, NJ, USA: Wiley, 2019.

F. Suryatini, H. Supriyanto, I. Rokhim, A. R. H. Martawireja, and A. Husen, “Optimasi Kendali Ketinggian Air dengan Kontroler Fuzzy PID dalam Menghadapi Variabel Gangguan,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 4, p. 998, 2023. http://dx.doi.org/10.26760/elkomika.v11i4.998

M. Ma, K. Sun, T. Wang, and J. Qiu, “Adaptive Fuzzy Risk-Sensitive Control for Stochastic Strict-Feedback Nonlinear Systems with Unknown Uncertainties,” IEEE Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3794–3802, 2021. http://dx.doi.org/10.1109/TFUZZ.2020.3028644

Article Metrics

Abstract view: 78 times
Download     : 25   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.