Pengaruh Sensitivitas Suhu Dengan Metode Couple-Mode Terhadap Fiber Bragg Grating Fiber Optik

Nasrulloh Nasrulloh, Ary Syahriar, Rizki Noor Prasetyono

Abstract

The characteristics of  Fiber Bragg Grating (FBG) related to change of reflection power and wavelength shift in the fiber optic due to changes in temperature. Furthermore, the refractive index alo  affects the sensitivity of FBG. Using the Coupled-mode theory, the derivation of mathematical formula can be found to justify the effect of temperature in FBG. Also, the Coupled-mode theory is integrated numerically by the Transfer Matrix method to achieve the final equation of the effect of temperature in FBG. To obtain optimal results, several different parameter values are given to be analyzed. The results show that the temperatures are affecting the wavelength but have no effect on the peak of reflection power. In addition, by increasing the temperature and value of the refractive index will affect the enhancement of the sensitivity of FBG. These characteristics are a good opportunity to produce filters, sensors, or other applications by utilizing the characteristics of temperature in FBG.

Keywords

Fiber Bragg grating, temperature, Coupled-mode theory, refractive index

Full Text:

PDF

References

Juraszek, J., & Antonik-Popiołek, P. (2021). Fibre Optic FBG Sensors for Monitoring of the Temperature of the Building Envelope. Materials, 14(5), 1207.

DeCusatis, C. (Ed.). (2013). Handbook of fiber optic data communication: a practical guide to optical networking. Academic Press.

Murianti, D., Prakoso, T., & Sofwan, A. (2018). FBG (Fiber Bragg Grating)UntukDWDM (Dense Wavelength Division Multiplexing). Transient: Jurnal Ilmiah Teknik Elektro, 7(1), 77-82.

Molardi, C. et al.(2019). Fiber Bragg grating (FBG) sensors in a high-scattering optical fiber doped with MgO nanoparticles for polarization-dependent temperature sensing. Applied Sciences, 9(15), 3107.

Widasari, E. R., Pramono, S. H., & Purnomo, M. F. E. (2013). Analisis Penerapan Optical Add-Drop Multiplexer (OADM) Menggunakan Fiber Bragg Grating (FBG) pada Teknik Dense Wavelength Division Multiplexing (DWDM). Jurnal Mahasiswa TEUB, 1(2).

Putri, S. E., & Harmadi, H. (2017). Rancang Bangun Sistem Pengukuran Frekuensi Getaran Akustik pada Speaker Piezoelektrik Menggunakan Sensor Serat Optik. Jurnal Fisika Unand, 6(1), 47-52.

Sari, Y. P., Hambali, A., & Pambudi, A. D. (2015). Simulasi Dan Analisis Optical Add Drop Multiplexer (oadm) Menggunakan Fiber Bragg Grating (fbg) Pada Link Long Haul. eProceedings of Engineering, 2(2).

Khlaifi, H., Zrelli, A., & Ezzedine, T. (2021). Optical fiber sensors in border detection application: Temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio. Optik, 229, 166257.

Pang, B., Gu, Z., Ling, Q., Wu, W., & Zhou, Y. (2020). Simultaneous measurement of temperature and surrounding refractive index by superimposed coated long period fiber grating and fiber Bragg grating sensor based on mode barrier region. Optik, 220, 165136.

A. Ghatak and K. Thyagarajan. (2013). “Introduction: The fiber optics revolution,” in Introduction to fiber optics, 2013.

Mohammad, N., Szyszkowski, W., Zhang, W. J., Haddad, E. I., Zou, J., Jamroz, W., & Kruzelecky, R. (2004). Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression. Journal of Lightwave Technology, 22(8), 2001.

Sukhoivanov, I. A., & Guryev, I. V. (2009). Photonic crystals: physics and practical modeling (Vol. 152). Springer.

K. C. Chuang, Z. Q. Zhang, and H. X. Wang. (2016). “Experimental study on slow flexural waves around the defect modes in a phononic crystal beam using fiber Bragg gratings,” Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 380, no. 47,doi: 10.1016/j.physleta.2016.09.055.

Coote, J. M., Torii, R., & Desjardins, A. E. (2021). Dynamic Characterisation of Fibre-Optic Temperature Sensors for Physiological Monitoring. Sensors, 21(1), 221.

Ding, Z., Tan, Z., Gao, Y., Wu, Y., & Yin, B. (2020). Strain and temperature discrimination using a fiber Bragg grating concatenated with PANDA polarization-maintaining fiber in a fiber loop mirror. Optik, 221, 165352.

Sarkar, S., Tarhani, M., Khosravi Eghbal, M., & Shadaram, M. (2020). Discrimination between strain and temperature effects of a single fiber Bragg grating sensor using sidelobe power. Journal of Applied Physics, 127(11), 114503.

Article Metrics

Abstract view: 32 times
Download     : 1   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.