Estimasi Sudut Rotasi Benda Kaku Berbasis IMU Menggunakan Kalman Filter

Lasmadi Lasmadi, Freddy Kurniawan, Muhammad Irfan Pamungkas


Rotation angle estimates are often required and applied to the dynamics of spacecraft, UAVs, robots, underwater vehicles, and other systems before control. IMU is an electronic module that is used as an angle estimation tool but has noise that can reduce the accuracy of the estimation. This study aims to develop an estimation model for the angle of rotation of a rigid body based on the IMU-gyroscope sensor on a smartphone using a Kalman filter. The estimation model is developed in a simple dynamic equation of motion in state-space. Kalman filters are designed based on system dynamics models to reduce noise in sensor data and improve measurement estimation results. Simulations are carried out with software to investigate the accuracy of the developed estimation algorithm. Experiments were carried out on several smartphone rotations during the roll, pitch, and yaw. Then, the experimental data obtained is analyzed for accuracy by comparing the built-in algorithms on smartphones. Based on the experimental results, the accuracy rate of estimation angle is 94% before going through the Kalman filter and an accuracy level of above 98% after going through the Kalman filter for every rotation on the x-axis, y-axis, and z-axis.


Estimasi-rotasi, gyroscope, IMU, Kalman-filter, rigid-body

Full Text:



Fang, B., Chou, W., & Ding, L. (2011, March). Attitude estimation of rigid bodies using MEMS inertial sensors. In 2011 Fourth International Conference on Intelligent Computation Technology and Automation (Vol. 1, pp. 592-595). IEEE.

Pan, Y., Song, P., Li, K., Zhou, Y., & Wang, Y. (2011, December). Attitude Estimation of Miniature Unmanned Helicopter Using Unscented Kalman Filter. In Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE) (pp. 1548-1551). IEEE.

Lasmadi, L. (2018, November). Attitude Estimation for Quadrotor Based on IMU with Kalman-Filter. In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 4, pp. 351-358).

Michel, T., Geneves, P., Fourati, H., & Layaïda, N. (2017, March). On attitude estimation with smartphones. In 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom) (pp. 267-275). IEEE.

Kundra, L., & Ekler, P. (2014). Bias Compensation of Gyroscopes in Mobiles with Optical Flow. Aasri Procedia, 9, 152-157.

Barton, J. D. (2012). Fundamentals of small unmanned aircraft flight. Johns Hopkins APL technical digest, 31(2), 132-149.

Faragher, R. (2012). Understanding the basis of the kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Signal processing magazine, 29(5), 128-132.

Ligorio, G., & Sabatini, A. M. (2015). A novel Kalman filter for human motion tracking with an inertial-based dynamic inclinometer. IEEE Transactions on Biomedical Engineering, 62(8), 2033-2043.

Wicaksono, M. A., Kurniawan, F., & Lasmadi. (2020). Kalman Filter untuk Mengurangi Derau Sensor Accelerometer pada IMU Guna Estimasi Jarak. AVITEC, 2(2), 145-159.

Lasmadi, L., Kurniawan, F., Dermawan, D., & Pratama, G. N. (2019, December). Mobile Robot Localization via Unscented Kalman Filter. In 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 129-132). IEEE.

Trimpe, S., & D'Andrea, R. (2010, May). Accelerometer-based tilt estimation of a rigid body with only rotational degrees of freedom. In 2010 IEEE International Conference on Robotics and Automation (pp. 2630-2636). IEEE.

Maarif, A., Puriyanto, R. D., & Hasan, F. R. T. (2020). Robot Keseimbangan dengan Kendali PID dan Kalman Filter. IT Journal Research and Development, 4(2).

Sandi, B. Y., Kurniawan, F., & Lasmadi, L. (2020, December). Estimasi sudut orientasi rigid body dengan menggunakan sensor IMU (Inertial Measurement Unit) dan Magnetometer. In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 6, pp. 283-294).

Mudarris, M., & Zain, S. G. (2020). Implementasi Sensor Inertial Meansurenment Unit (IMU) untuk Monitoring Perilaku Roket. AVITEC, 2(1), 55-64.

Hyde, R. A., Ketteringham, L. P., Neild, S. A., & Jones, R. J. (2008). Estimation of upper-limb orientation based on accelerometer and gyroscope measurements. IEEE Transactions on Biomedical Engineering, 55(2), 746-754.

Source. (2020). Sensor types. Dipetik September 29, 2020, dari source.

Article Metrics

Abstract view: 137 times
Download     : 62   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


  • There are currently no refbacks.