Penentuan Orientasi dan Translasi Gerakan UAV menggunakan Data Fusion berbasis Kalman Filter

Freddy Kurniawan, Muhammad Ridlo Erdata Nasution, Okto Dinaryanto, Lasmadi Lasmadi


Navigation system is essential in estimating the orientation and translation motion of UAV. The system can utilize data from several sensors and devices, e.g. MIMU and GPS. The orientation of UAV can be precisely calculated by means of data from accelerometer and magnetometer when both sensors are in static state. Meanwhile, under dynamic conditions, the orientation can be more precisely predicted through the use of gyroscope sensor data. In order to attain a robust navigation system, a data fusion based on Kalman filter is built to estimate the orientation from the accelerometer, gyroscope, and magnetometer sensors. Moreover, for sake of achieving high accuracy, the filter will further correct the orientation by giving a higher weight to the data from accelerometer and magnetometer sensors when the UAV is in static condition. In the case of its position, the UAV position will be estimated by performing data fusion of MIMU and GPS data. Based on the experiments, it could be showed that data fusion based on Kalman filter provided more accurate results of orientation and position of UAV. The result of orientation based on gyroscope sensor data has an average error of 18.12°, while those obtained by accelerometer and magnetometer sensors data is 1.3°. Furthermore, by using the data fusion based on Kalman filter, the error of orientation predicted by combining data from accelerometer, magnetometer, and gyroscope will decrease to 0.87°.


accelerometer, gyroscope, Kalman filter, magnetometer, unmanned aircraft vehicle

Full Text:



Xia, K., Lee, S., & Son, H. (2020). Adaptive control for multi-rotor UAVs autonomous ship landing with mission planning. Aerospace Science and Technology, 96, 105549.

Cahyadi, A., Herdjunanto, S., & Hidayat, R. (2017). Inertial Navigation for Quadrotor Using Kalman Filter with Drift Compensation. International Journal of Electrical & Computer Engineering (2088-8708), 7(5).

Luo, C., McClean, S. I., Parr, G., Teacy, L., & De Nardi, R. (2013). UAV position estimation and collision avoidance using the extended Kalman filter. IEEE Transactions on Vehicular Technology, 62(6), 2749-2762.

Ghoddousi-Fard, R., & Lahaye, F. (2015, October). High latitude ionospheric disturbances: Characterization and effects on GNSS precise point positioning. In 2015 International Association of Institutes of Navigation World Congress (IAIN) (pp. 1-6). IEEE.

Zhang, G., & Hsu, L. T. (2018). Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system. Aerospace science and technology, 80, 368-380.

D. A. Grejner-Brzezinska, C. K. Toth, T. Moore, J. F. Raquet, M. M. Miller dan A. Kealy. (2016). Multisensor Navigation, dalam Proceedings of the IEEE.

Nez, A., Fradet, L., Marin, F., Monnet, T., & Lacouture, P. (2018). Identification of noise covariance matrices to improve orientation estimation by Kalman filter. Sensors, 18(10), 3490.

Mudarris, M., & Zain, S. G. (2020). Implementasi Sensor Inertial Meansurenment Unit (IMU) untuk Monitoring Perilaku Roket. AVITEC, 2(1), 55-64.

Hassanalian, M., Rice, D., & Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97, 61-105.

Canciani, A., & Raquet, J. (2017). Airborne magnetic anomaly navigation. IEEE Transactions on Aerospace and Electronic Systems, 53(1), 67-80.

Rhudy, M. B., Salguero, R. A., & Holappa, K. (2017). A kalman filtering tutorial for undergraduate students. International Journal of Computer Science & Engineering Survey, 8(1), 1-9.

Widodo, R. B., & Wada, C. (2016). Attitude estimation using kalman filtering: external acceleration compensation considerations. Journal of Sensors, 2016.

Bijjahalli, S., Sabatini, R., & Gardi, A. (2020). Advances in intelligent and autonomous navigation systems for small UAS. Progress in Aerospace Sciences, 115, 100617.

Lasmadi, L., Kurniawan, F., & Pamungkas, M. I. (2021). Estimasi Sudut Rotasi Benda Kaku Berbasis IMU Menggunakan Kalman Filter. AVITEC, 3(1), 57-68.

Prilian, T., Rusmana, I., & Handayani, T. (2021). Kursi Roda Elektrik dengan Kendali Gestur Kepala. AVITEC, 3(1), 29-42.

Tuck, K. (2007). Tilt sensing using linear accelerometers. Freescale semiconductor application note AN3107.

Rafiq, M., Kurniawan, F., & Purnami, N. A. (2021). Koreksi Sudut Attitude Dan Heading Quadrotor Dengan Perubahan Matriks Kovarian Derau Pengukuran Kalman Filter. SITEKIN: Jurnal Sains, Teknologi dan Industri, 18(2), 251-260

Wicaksono, M. A. R., Kurniawan, F., & Lasmadi, L. (2020). Kalman Filter untuk Mengurangi Derau Sensor Accelerometer pada IMU Guna Estimasi Jarak. AVITEC, 2(2), 145-160.

Article Metrics

Abstract view: 168 times
Download     : 17   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


  • There are currently no refbacks.