MFCC dan KNN untuk Pengenalan Suara Artikulasi P

Akhmad Anggoro, Samiadji Herdjunanto, Risanuri Hidayat

Submitted : 2020-01-09, Published : 2020-01-20.

Abstract

Cleft lip and palate (CLP) is a term for patients who experience speech organ disorders, that disorder is caused by a gap found in the lip or palate. Patients will experience speech problems. Pattern recognition in CLP sound is still small in Indonesia. In this research in the language identification of CLP and standard sound patterns using the extraction of the Mel Frequency Cepstral Coefficients (MFCC) feature with K-Nearest Neighbor (KNN) classification and K-Fold cross-validation. By making words that have the letter /p/ as a reference, known as bilabial. The words used include Paku, Kapak, and Atap. The accuracy of recognition results reached more than 69%, with a minimum accuracy of 41%.

Keywords

Cleft Lip Palate. MFCC, KNN, K-Fold cross-validation

Full Text:

PDF

References

Charisma, Atik. 2013. “Sistem Verifikasi Penutur Menggunakan Metode Mel Frequency Cepstral Coefficient-Vector Quantisation (MFCC-QV) Serta Sum Square Error (SSE) Dan Pengenalan Kata Menggunakan Metode Logika Fuzzy.” Jurnal Teknik Elektro 2(2).

Darmawan, Budi and Suthami Ariessaputra. 2016. “Sistem Pengenalan Dan Verifikasi Pembicara HMM.” Semnastikom 2016 1–6.

DARWITO, HARYADI AMRAN. 2012. “Identifikasi Level Keparahan Cleft Lip and Palate.” 82.

Dixit, Abhishek, Abhinav Vidwans, and Pankaj Sharma. 2016. “Improved MFCC and LPC Algorithm for Bundelkhandi Isolated Digit Speech Recognition.” International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT 2016 3755–59.

Effendi, Muhammad Makmun. n.d. “Pengenalan Pengaruh Suara Konsonan Terhadap Vokal Menggunakan MFCC Dan SVM.” 03(02):34–39.

Ferdiansyah, Veri and Ayu Purwarianti. 2011. “Indonesian Automatic Speech Recognition System Using English-Based Acoustic Model.” Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, ICEEI 2011 (July).

He, Ling, Jing Zhang, Qi Liu, Junpeng Zhang, Heng Yin, and Margaret Lech. 2018. “Automatic Detection of Glottal Stop in Cleft Palate Speech.” Biomedical Signal Processing and Control 39:230–36.

Hidayat, Syahroni, Risanuri Hidayat, and Teguh Bharata Adji. 2015. “Sistem Pengenal Tutur Bahasa Indonesia Berbasis Suku Kata.” (September):246–51.

Kusumawati, Ririn. 2016. “Metode Linear Predictive Coding (LPC) Pada Klasifikasi Hidden Markov Model (HMM) Untuk Kata Arabic Pada Penutur Indonesia.” Matics 8(1):32.

Larangeira, Fabiane Rodrigues, Jeniffer de Cássia Rillo Dutka, Melina Evangelista Whitaker, Olívia Mesquita Vieira de Souza, José Roberto Pereira Lauris, Mariana Jales Felix da Silva, and Maria Inês Pegoraro-Krook. 2016. “Speech Nasality and Nasometry in Cleft Lip and Palate.” Brazilian Journal of Otorhinolaryngology 82(3):326–33.

Orozco-Arroyave, Juan Rafael, Jesús Francisco Vargas-Bonilla, Juan Camilo Vásquez-Correa, Cesar German Castellanos-Domínguez, and Elmar Nöth. 2016. “Automatic Detection of Hypernasal Speech of Children with Cleft Lip and Palate from Spanish Vowels and Words Using Classical Measures and Nonlinear Analysis.” Revista Facultad de Ingenieria 2016(80):109–23.

Rullo, R., D. Di Maggio, V. M. Festa, and N. Mazzarella. 2009. “Speech Assessment in Cleft Palate Patients: A Descriptive Study.” International Journal of Pediatric Otorhinolaryngology 73(5):641–44.

Sardjono. 2005. Terapi Wicara. jakarta: Departemen Pendidikan Nasional.

Supandi, Andriani. 2014. “ANGKA KEJADIAN SUMBING BIBIR DI RSUP Prof. Dr. R. D. KANDOU MANADO PERIODE 2011-2013.” E-CliniC 2(2).

Vijayalakshmi, P., M. Ramasubba Reddy, and Douglas O’Shaughnessy. 2007. “Acoustic Analysis and Detection of Hypernasality Using a Group Delay Function.” IEEE Transactions on Biomedical Engineering 54(4):621–29.

Yessivirna, Riska, Marjib, and Dian Eka Ratnawati. 2013. “Klasifikasi Suara Berdasarkan Gender (Jenis Kelamin) Dengan Metode K-Nearest Neighbor (Knn).” Jurnal Doro 214(2013):1–9.

Yusuf, Siti Agrippina Alodia and Risanuri Hidayat. 2019. “MFCC Feature Extraction and KNN Classification in ECG Signals.” 2019 6th International Conference on Information Technology, Computer and Electrical Engineering, ICITACEE 2019 1–5.

Yuwono, Wiratmoko. 1987. “Klasifikasi Tingkat Keparahan Bibir Sumbing Pada Citra 2D.” 1–3.

Article Metrics

Abstract view: 909 times
Download     : 628   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.