Modeling and Optimization of 4G Pathloss using Swarm Intelligence Algorithm: Case Study and Python-Based Implementation

Tri Noviyansyah, Syahfrizal Tahcfulloh

Submitted : 2025-08-02, Published : 2025-09-23.

Abstract

Accurate pathloss (PL) modeling is critical for 4G-LTE network planning in complex urban environments like Central Tarakan, Indonesia. This study presents a Python-based, open-source implementation of Particle Swarm Optimization (PSO) to calibrate three conventional PL models, Okumura-Hata, SUI, and Ericsson 9999, using real drive-test data. Initial RMSE values exceeded 50 dB, revealing severe inaccuracies under heterogeneous terrain. PSO optimization dramatically improved accuracy: RMSE reduced to 5.98 dB (Okumura-Hata, 89.44% improvement), 9.83 dB (SUI, 84.03%), and 6.44 dB (Ericsson 9999, 91.32%). The optimized Okumura-Hata model achieved the highest reliability, with 88.89% of measurement points meeting the <8 dB threshold and the lowest standard deviation (1.71 dB). Ericsson 9999 attained the lowest minimum RMSE (0.06 dB), showcasing exceptional potential under favorable conditions. PSO converged rapidly within 50 iterations, and sensitivity analysis confirmed that standard parameters (ω = 0.5–0.7, c₁ = c₂ = 1.8–2.2) suffice for robust calibration, eliminating need for fine-tuning. Results demonstrate that real-world propagation deviates significantly from classical logarithmic assumptions, validating the necessity of data-driven, site-specific optimization. The fully open-source framework—built with NumPy, Pandas, and Matplotlib—offers a practical, scalable solution for intelligent radio planning in dynamic urban landscapes.

Keywords

Pathloss modeling; Particle Swarm Optimization (PSO); 4G LTE networks; radio propagation; open-source implementation

References

K. Ojutkangas, E. Rossi, S. Aalto, and M. Matinmikko-Blue, “Linking mobile communications with the United Nations sustainable development goals: Mapping process,” Discussion Paper, Centre for European Policy Studies,2020. [Online]. Available: https://www.econstor.eu/handle/10419/224869

S. R. Saunders and A. A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems. Hoboken, NJ, USA: John Wiley & Sons, 2024.

S. Kumar, Wireless Communication – The Fundamental and Advanced Concepts. Aalborg, Denmark: River Publishers, 2022.

M. Khalily, O. Yurduseven, T. J. Cui, Y. Hao, and G. V. Eleftheriades, “Engineered electromagnetic metasurfaces in wireless communications: Applications, research frontiers and future directions,” IEEE Commun. Mag., vol. 60, no. 10, pp. 88–94, 2022. https://dx.doi.org/10.1109/MCOM.004.2200052

A. M. Ado, M. I. Zubair, and A. A. Wakili, “Attenuations in wireless radio communication,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, pp. 2520–2524, 2020. https://dx.doi.org/10.22214/ijraset.2020.5418

A. Saakian, Radio Wave Propagation Fundamentals. Norwood, MA, USA: Artech House, 2020.

O. E. Jackson, M. Uthman, and S. Umar, “Performance analysis of path loss prediction models on very high frequency spectrum,” Eur. J. Eng. Technol. Res., vol. 7, no. 2, pp. 87–91, 2022. https://dx.doi.org/10.24018/ejeng.2022.7.2.2783

S. Ojo, M. Akkaya, and J. C. Sopuru, “An ensemble machine learning approach for enhanced path loss predictions for 4G LTE wireless networks,” Int. J. Commun. Syst., vol. 35, no. 7, p. e5101, 2022. https://dx.doi.org/10.1002/dac.5101

O. E. Ogunsola, O. Adekele, and O. I. Olaluwoye, “Mobile 4G LTE networks mobility and coverage for some locations in Ibadan using path loss analysis,” IEEE Comput. Soc. Tech. Paper Ser., vol. 26, pp. 7–22, 2020. https://dx.doi.org/10.22624/isteams/v26p2-ieee-ng-ts

A. Akinbolati and M. O. Ajewole, “Investigation of path loss and modeling for digital terrestrial television over Nigeria,” Heliyon, vol. 6, no. 6, 2020. https://dx.doi.org/10.1016/j.heliyon.2020.e04101

A. A. Olukunle, A. O. Kunle, O. O. Joel, I. A. Okikiade, A. M. Olusegun, and A. S. Adeola, “Development of a modified propagation model of a wireless mobile communication system in a 4G network,” Int. J. Electr. Comput. Eng., vol. 13, no. 6, pp. 6489–6500, 2023. https://dx.doi.org/10.11591/ijece.v13i6.pp6489-6500

A. Bouchemha, H. Djellab, and M. C. Nait-Hamoud, “Analysis and optimization of 4G/LTE network pathloss using particles swarm optimization algorithm,” Int. J. Electr. Electron. Res., vol. 12, no. 2, pp. 557–566, 2024. https://dx.doi.org/10.37391/IJEER.120230

B. D. Beelde, E. Tanghe, D. Plets, and W. Joseph, “Outdoor channel modeling at d-band frequencies for future fixed wireless access applications,” IEEE Wireless Commun. Lett., vol. 11, no. 11, pp. 2355–2359, 2022. https://dx.doi.org/10.1109/LWC.2022.3202921

T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and S. Mirjalili, “Particle swarm optimization: A comprehensive survey,” IEEE Access, vol. 10, pp. 10031–10061, 2022. https://dx.doi.org/10.1109/ACCESS.2022.3142859

A. G. Gad, “Particle swarm optimization algorithm and its applications: A systematic review,” Arch. Comput. Methods Eng., vol. 29, no. 5, pp. 2531–2561, 2022. https://dx.doi.org/10.1007/s11831-021-09694-4

Z. Shakir, A. Y. Mjhool, A. Al-Thaedan, A. Al-Sabbagh, and R. Alsabah, “Key performance indicators analysis for 4G-LTE cellular networks based on real measurements,” Int. J. Inf. Technol., vol. 15, pp. 1347–1355, 2023. https://dx.doi.org/10.1007/s41870-023-01210-0

R. A. Sulaiman and Y. Saragih, “Analisis quality of service (QoS) jaringan provider indihome melalui drive test di kabupaten subang [Analysis of Indihome provider network quality of service (QoS) through drive testing in Subang Regency],” Aisyah J. Inf. Electr. Eng., vol. 6, no. 1, pp. 110–117, 2024. https://dx.doi.org/10.30604/jti.v6i1.219 (in Indonesian).

L. M. Silalahi, S. Budiyanto, F. A. Silaban, I. U. V. Simanjuntak, and A. D. Rochendi, “Improvement of quality and signal coverage LTE in Bali province using drive test method,” in Proc. Int. Seminar Intell. Technol. Appl. (ISITIA), Surabaya, Indonesia, 2021, pp. 376–380. https://dx.doi.org/10.1109/ISITIA52817.2021.9502227

Y. Mahendra, S. M. A. Sasongko, and M. S. Yadnya, “Analisis hasil pengukuran quality of service (QoS) dan kuat sinyal 4G LTE pada kondisi line of sight (LOS) dan kondisi non line of sight (NLOS) di daerah urban studi kasus (lingkungan Universitas Mataram) [Analysis of 4G LTE Quality of Service (QoS) and Signal Strength Measurement Results under LOS and NLOS in an Urban Area: Case Study at University of Mataram],” J. Media Informatika, vol. 6, no. 2, pp. 688–695, 2024. [Online] Available: https://ejournal.sisfokomtek.org/index.php/jumin/article/view/4800 (in Indonesian).

M. Ayad, R. Alkanhel, K. Saoudi, M. Benziane, S. Medjedoub, and S. S. M. Ghoneim, “Evaluation of radio communication links of 4G systems,” Sensors, vol. 22, no. 10, p. 3923, 2022. https://dx.doi.org/10.3390/s22103923

M. Rani, S. Aulia, and Zurnawita, “Analysis of measuring drive test result 4G LTE network telkomsel operators using tems pocket and tems discovery software,” Int. J. Telecommun. Electron. Comput. Sci., vol. 1, no. 1, pp. 22–28, 2024.

M. Gharib, S. Nandadapu, and F. Afghah, “An exhaustive study of using commercial LTE network for UAV communication in rural areas,” in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2021, pp. 1–6. https://dx.doi.org/10.1109/ICCWorkshops50388.2021.9473547

M. Behjati, M. A. Zulkifley, H. A. H. Alobaidy, R. Nordin, and N. F. Abdullah, “Reliable aerial mobile communications with RSRP & RSRQ prediction models for the Internet of Drones: A machine learning approach,” Sensors, vol. 22, no. 15, p. 5522, 2022. https://dx.doi.org/10.3390/s22155522

I. Joseph, E. Oghu, and O. O. Roberts, “Path loss and models: A survey and future perspective for wireless communication networks,” Int. J. Adv. Netw. Appl., vol. 15, no. 2, pp. 5892–5907, 2023. https://dx.doi.org/10.35444/IJANA.2023.15209

F. A. I. Nuari, U. K. Usman, and A. T. Hanuranto, “Penerapan Unmanned Aerial Vehicle (UAV) untuk Pengukuran Kuat Sinyal (Drive Test) pada Jaringan 4G LTE [Application of Unmanned Aerial Vehicle (UAV) for Signal Strength Measurement (Drive Test) in 4G LTE Networks],” AVITEC, vol. 3, no. 1, pp. 69–82, Feb. 2021. https://dx.doi.org/10.28989/avitec.v3i1.893 (in Indonesian).

A. Barrios-Ulloa, A. Cama-Pinto, E. De-la-Hoz-Franco, R. Ramírez-Velarde, and D. Cama-Pinto, “Modeling of path loss for radio wave propagation in wireless sensor networks in cassava crops using machine learning,” Agriculture, vol. 13, no. 11, p. 2046, 2023. https://dx.doi.org/10.3390/agriculture13112046

S. Tahcfulloh, E. Wahyuni, D. Santoso, and A. S. Anam, “Radiowave pathloss modeling using polynomial methods for wet and dry land and rice agriculture,” in Proc. 11th Int. Conf. Electr. Eng., Comput. Sci. Informatics (EECSI), Yogyakarta, Indonesia, 2024, pp. 379–384. https://dx.doi.org/10.1109/EECSI63442.2024.10776287

B. Myagmardulam, N. Tadachika, K. Takahashi, R. Miura, F. Ono, and T. Kagawa, “Path loss prediction model development in a mountainous forest environment,” IEEE Open J. Commun. Soc., vol. 2, pp. 2492–2501, 2021. https://dx.doi.org/10.1109/OJCOMS.2021.3122286

J. Wang, Y. Hao, and C. Yang, “The current progress and future prospects of path loss model for terrestrial radio propagation,” Electronics, vol. 12, no. 24, p. 4959, 2023. https://dx.doi.org/10.3390/electronics12244959

T. I. Unger and M. Kuczmann, “Comparison of outdoor radiowave propagation models for land mobile systems in the 3.6 GHz and 6 GHz frequency bands,” Telecom, vol. 6, no. 2, pp. 1–41, 2025. https://dx.doi.org/10.3390/telecom6020042

A. Akinbolati and B. T. Abe, “Investigating the reliability of empirical path loss models over digital terrestrial UHF channels in Ikorodu and Akure, southwestern Nigeria,” Telecom, vol. 6, no. 2, pp. 1–21, 2025. https://dx.doi.org/10.3390/telecom6020028

P. D. Katev, “Propagation models for WiMAX at 3.5 GHz,” in Proc. ELEKTRO, Rajecke Teplice, Slovakia, 2012, pp. 61–65. https://dx.doi.org/10.1109/ELEKTRO.2012.6225572

E. M. D. Djomadji, I. B. Kabiena, J. T. Mandengue, F. Watching, and E. Tonye, “Okumura Hata propagation model optimization in 400 MHz band based on differential evolution algorithm: Application to the city of Bertoua,” J. Comput. Commun., vol. 11, no. 5, pp. 52–69, 2023. https://dx.doi.org/10.4236/jcc.2023.115005

S. K. Meena and A. R. Garg, “Stability analysis of optimized PMU placement using hybrid and individual TLBO-PSO techniques,” Adv. Sustain. Sci. Eng. Technol., vol. 7, no. 1, pp. 02501024–02501024, 2025. https://dx.doi.org/10.26877/asset.v7i1.1261

K. Jegadeeswari and R. Rathipriya, “Optimized stacking ensemble classifier for early cancer detection using biomarker data,” Adv. Sustain. Sci. Eng. Technol., vol. 6, no. 4, pp. 02404017–02404017, 2024. https://dx.doi.org/10.26877/asset.v6i4.986

S. Tahcfulloh, E. Wahyuni, D. Santoso, and R. Juliannanda, “Modified COST-235 empirical pathloss model for agricultural WSN using particle swarm optimization,” IIUM Eng. J., vol. 26, no. 1, pp. 336–352, 2025. https://dx.doi.org/10.31436/iiumej.v26i1.3446

M. J. Amoshahy, M. Shamsi, and M. H. Sedaaghi, “A novel flexible inertia weight particle swarm optimization algorithm,” PLoS ONE, vol. 11, no. 8, p. e0161558, 2016. https://dx.doi.org/10.1371/journal.pone.0161558

R. S. Kaffa, U. K. Usman, Z. S. L. Purnomo, R. F. Akbar, and S. P. Wisetyo, “Network signal coverage expansion planning WLAN outdoor with 4-C scenario approach at Telkom University,” Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC), vol. 7, no. 1, pp. 87–102, Feb. 2025. https://dx.doi.org/10.28989/avitec.v7i1.2711

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. ICNN’95 – Int. Conf. Neural Netw., Perth, WA, Australia, 1995, vol. 4, pp. 1942–1948. https://dx.doi.org/10.1109/ICNN.1995.488968

Article Metrics

Abstract view: 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.