Duval Triangle-Based Dissolved Gas Analysis using GNU Octave for Transformer Fault Detection
Submitted : 2025-07-09, Published : 2025-08-27.
Abstract
Keywords
Full Text:
PDFReferences
D. A. Barkas, I. Chronis, and C. Psomopoulos, “Failure mapping and critical measurements for the operating condition assessment of power transformers,” Energy Rep., vol. 8, pp. 527–547, 2022. https://doi.org/10.1016/j.egyr.2022.07.028.
S. Bustamante, M. Manana, A. Arroyo, A. Laso, and R. Martinez, “Evolution of graphical methods for the identification of insulation faults in oil-immersed power transformers: A review,” Renew. Sustain. Energy Rev., vol. 199, Art. no. 114473, 2024. https://doi.org/10.1016/j.rser.2024.114473.
S. A. Wani, A. S. Rana, S. Sohail, O. Rahman, S. Parveen, and S. A. Khan, “Advances in DGA-based condition monitoring of transformers: A review,” Renew. Sustain. Energy Rev., vol. 149, Art. no. 111347, 2021. https://doi.org/10.1016/j.rser.2021.111347.
G. Odongo, R. Musabe, and D. Hanyurwimfura, “A multinomial DGA classifier for incipient fault detection in oil-impregnated power transformers,” Algorithms, vol. 14, no. 4, Art. no. 128, 2021. https://doi.org/10.3390/a14040128.
A. Wajid et al., “Comparative performance study of dissolved gas analysis (DGA) methods for identification of faults in power transformer,” Int. J. Energy Res., 2023, Art. ID 9960743. https://doi.org/10.1155/2023/9960743.
R. M. Arias Velásquez, “A comprehensive analysis for wind turbine transformer and its limits in the dissolved gas evaluation,” Heliyon, vol. 10, e39449, 2024. https://doi.org/10.1016/j.heliyon.2024.e39449.
D. Hu, Y. Yang, H. Dai, C. Tang, and J. Xie, “An interpretable machine learning method for fault diagnosis of oil-immersed transformers based on edge inference,” Int. J. Electr. Power Energy Syst., vol. 168, p. 110647, 2025. https://doi.org/10.1016/j.ijepes.2025.110647.
T. Yang, Y. Fang, C. Zhang, C. Tang, and D. Hu, “Prediction of dissolved gas content in transformer oil based on multi-information fusion,” High Volt., vol. 9, no. 3, pp. 685–699, 2024. https://doi.org/10.1049/hve2.12408.
Suwarno, H. Sutikno, R. A. Prasojo, and A. Abu-Siada, “Machine learning based multi-method interpretation to enhance dissolved gas analysis for power transformer fault diagnosis,” Heliyon, vol. 10, no. 4, p. e25975, 2024. https://doi.org/10.1016/j.heliyon.2024.e25975.
T. U. Mawelela, A. F. Nnachi, A. O. Akumu, and B. T. Abe, “Fault diagnosis of power transformers using Duval Triangle,” in Proc. IEEE PES/IAS PowerAfrica, 2020, pp. 1–5. https://doi.org/10.1109/PowerAfrica49420.2020.9219802.
R. A. Prasojo et al., “Precise transformer fault diagnosis via random forest model enhanced by synthetic minority over-sampling technique,” Electr. Power Syst. Res., vol. 220, p. 109361, 2023. https://doi.org/10.1016/j.epsr.2023.109361.
M. D. Equbal et al., “IoT-based classification of transformer faults using emerging techniques of E-nose and ANFIS,” Front. Energy Res., vol. 10, Art. no. 1020040, Oct. 2022. https://doi.org/10.3389/fenrg.2022.1020040.
Y. Benmahamed, O. Kherif, M. Teguar, A. Boubakeur, and S. S. M. Ghoneim, “Accuracy improvement of transformer faults diagnostic based on DGA data using SVM-BA classifier,” Energies, vol. 14, no. 10, Art. no. 2970, 2021. https://doi.org/10.3390/en14102970.
S. S. M. Ghoneim, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, “Enhancing diagnostic accuracy of transformer faults using teaching–learning-based optimization,” IEEE Access, vol. 9, pp. 30817–30832, 2021. https://doi.org/10.1109/ACCESS.2021.3060288.
N. Chattranont, S. Woothipatanapan, and N. Rugthaicharoencheep, “Case study on power transformer using dissolved gas analysis technique,” in Proc. 2020 Int. Conf. Power, Energy and Innovations (ICPEI), 2020, pp. 165–168. https://doi.org/10.1109/ICPEI49860.2020.9431480.
B. Reuter et al., “FESTUNG 1.0: Overview, usage, and example applications of the MATLAB/GNU Octave toolbox for discontinuous Galerkin methods,” Comput. Math. Appl., vol. 81, pp. 3–41, 2021. https://doi.org/10.1016/j.camwa.2020.08.018.
N. Maharani, “Penggunaan aplikasi OKTAVE sebagai alat bantu pembelajaran topik sistem persamaan linier,” PENDIPA J. Sci. Educ., vol. 6, no. 2, pp. 451–456, 2022. https://doi.org/10.33369/pendipa.6.2.451-456.
Article Metrics


This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.