Optimization of BLDC Motor Geometry using Particle Swarm Optimization Algorithm to Achieve Efficiency Balance Across Various Electric Vehicle Traction Requirements
Submitted : 2025-06-30, Published : 2025-09-03.
Abstract
Keywords
References
Z. Yan, H. Ding, and L. Chen, “The analyzing the role of electric vehicles in urban logistics: A case of China,” Front. Environ. Sci., vol. 11, Art. no. 1128079, 2023. http://dx.doi.org/10.3389/fenvs.2023.1128079
S. Ma, K. Chen, and Q. Zhang, “Analysis of multi-objective optimization design of interior double radial and tangential combined magnetic pole permanent magnet drive motor for electric vehicles,” World Electr. Veh. J., vol. 15, Art. no. 142, 2024. http://dx.doi.org/10.3390/wevj15040142
R. Kumar, “Electric vehicle adoption in urban areas: socio-economic factors and policy implications,” Shodh Sagar Journal of Electric Vehicles, vol. 1, no. 2, pp. 14–19, 2024. http://dx.doi.org/10.36676/jev.v1.i2.11
J. Ma et al., “Analysis of urban electric vehicle adoption based on operating costs in urban transportation network,” Systems, vol. 11, no. 3, Art. no. 149, 2023. http://dx.doi.org/10.3390/systems11030149
Z. Pusztai, P. Kőrös, F. Szauter, and F. Friedler, “Implementation of optimized regenerative braking in energy efficient driving strategies,” Energies, vol. 16, no. 6, Art. no. 2682, 2023. http://dx.doi.org/10.3390/en16062682
E. Håkansson and B. Dubé, “Winning approach: selection criteria for competitive battery powered racing vehicles,” World Electr. Veh. J., vol. 8, no. 1, pp. 160–171, 2016. http://dx.doi.org/10.3390/wevj8010160.
Marwansyah, Panduan Kompetisi Mobil Listrik Indonesia XIII – 2024 [Guide to the Indonesian Electric Car Competition XIII - 2024], Bandung, Indonesia: KMLI, 2024. [Online]. Available: https://kmli.polban.ac.id/panduan-kmli-xiii/. Accessed: Aug. 25, 2025. (in Indonesian)
O. Tosun, K. Toker, O. Tosun, N. F. O. Serteller, and V. Topuz, “The design, optimization, and experimental study of hub and axial flux BLDC motor under operating conditions for light electric vehicles,” Adv. Sci. Technol. Eng. Syst. J., vol. 8, no. 3, pp. 272–282, 2023. http://dx.doi.org/10.25046/aj080330
B. Azhari, P. Irasari, and P. Widianto, “Design and simulation of 5 kW BLDC motor with half-buried permanent magnets using an existing stator body,” Int. J. Power Electron. Drive Syst., vol. 12, no. 4, pp. 2030–2043, 2021. http://dx.doi.org/10.11591/ijpeds.v12.i4.pp2030-2043.
C. Kumar, D. M. Mary, and T. Gunasekar, “MOCHIO: a novel multi-objective coronavirus herd immunity optimization algorithm for solving brushless direct current wheel motor design optimization problem,” Automatika, vol. 63, no. 1, pp. 149–170, 2022. http://dx.doi.org/10.1080/00051144.2021.2014035
A. Kerem, “Design, implementation and speed estimation of three-phase 2 kW out-runner permanent magnet BLDC motor for ultralight electric vehicles,” Electr. Eng., vol. 103, no. 5, pp. 2547–2559, 2021. http://dx.doi.org/10.1007/s00202-021-01279-5.
Z. Arifin, I. W. Adiyasa, and M. A. H. Rasid, “Design optimization analysis on the performance of BLDC motors on electric bicycles,” J. Phys.: Conf. Ser., vol. 2406, Art. no. 012016, 2022. http://dx.doi.org/10.1088/1742-6596/2406/1/012016
H. Msaddek, A. Mansouri, and H. Trabelsi, “Optimal design and cogging torque minimization of a permanent magnet motor for an electric vehicle,” Teh. Vjesn., vol. 30, no. 2, pp. 538–544, 2023. http://dx.doi.org/10.17559/TV-20220815140808.
M. Sundaram et al., “Design and FEM analysis of high-torque power density permanent magnet synchronous motor (PMSM) for two-wheeler e-vehicle applications,” Int. Trans. Electr. Energy Syst., vol. 2022, Art. ID 1217250, 14 pp., 2022. http://dx.doi.org/10.1155/2022/1217250
M. As-salaf and Syahrial, “Simulasi Pengaturan Kecepatan Motor BLDC menggunakan Software PSIM [Simulation of BLDC Motor Speed Control using PSIM Software],” MIND J., vol. 6, no. 1, pp. 103–117, 2021. https://doi.org/10.26760/mindjournal.v6i1.103 (in Indonesian)
S. Torabi, M. Bellone, and M. Wahde, “Energy minimization for an electric bus using a genetic algorithm,” Eur. Transp. Res. Rev., vol. 12, no. 1, p. 6, 2020. http://dx.doi.org/10.1186/s12544-019-0393-1
K. N. Genikomsakis and G. Mitrentsis, “A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications,” Transp. Res. D, vol. 50, pp. 98–118, 2017. http://dx.doi.org/10.1016/j.trd.2016.10.014
O. Ustun, G. Tanc, O. C. Kivanc, and G. Tosun, “In pursuit of proper BLDC motor design for electric bicycles,” in Proc. 2016 22nd Int. Conf. Electr. Mach. (ICEM), 2016, pp. 1808–1814. http://dx.doi.org/10.1109/ICELMACH.2016.7732769
V. Bogdan, M. Adrian, L. Leonard, B. Alexandra, S. Alecsandru, and N. Ionut, “Design and optimization of a BLDC motor for small power vehicles,” in Proc. SIELMEN 2021—11th Int. Conf. Electromech. Energy Syst., 2021, pp. 438–443. http://dx.doi.org/10.1109/SIELMEN53755.2021.9600327.
Y. Cheng, X. Lyu, and S. Mao, “Optimization design of brushless DC motor based on improved JAYA algorithm,” Sci. Rep., vol. 14, Art. no. 5427, 2024. http://dx.doi.org/10.1038/s41598-024-54582-z
Y. U. Nugraha, A. Cahyadi, M. N. Yuniarto, and I. Sidharta, “Design optimization for torque density in brushless DC motor with IPM V-type using PSO method,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 694, Art. no. 012009, 2019. http://dx.doi.org/10.1088/1757-899X/694/1/012009Article Metrics

This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.