A Multilingual Approach to Aspect-Based Sentiment Analysis on Gobis Suroboyo Application Reviews using LDA and SVM
Submitted : 2025-05-29, Published : 2025-06-24.
Abstract
Keywords
Full Text:
PDFReferences
B. P. S. K. Surabaya, “Kota Surabaya Dalam Angka 2024 [Surabaya City in Figures 2024],” 2024. (In Indonesian)
Z. A. Haqie, R. E. Nadiah, and O. P. Ariyani, “Inovasi Pelayanan Publik Suroboyo Bis di Kota Surabaya [Innovation of Public Services Suroboyo Bis in Surabaya City],” JPSI (Journal Public Sect. Innov., vol. 5, no. 1, p. 23, Dec. 2020. https://dx.doi.org/10.26740/jpsi.v5n1.p23-30 (In Indonesian)
R. A. Firmansyah and K. H. Putra, “Analisis Tingkat Kepuasan Pengguna Transportasi Umum ‘Suroboyo Bus’ Rute Halte Rajawali-Terminal Purabaya Dengan Metode Importance Performance Analysis (Ipa) [Analysis of User Satisfaction Level of Public Transportation 'Suroboyo Bus' Route Rajawali Bus Stop-Purabaya Terminal Using Importance Performance Analysis (IPA) Method],” Semin. Teknol. Perencanaan, Perancangan, Lingkungan, dan Infrastruktur FTSP ITATS, pp. 1–6, 2019, [Online]. Available: https://ejurnal.itats.ac.id/stepplan/article/view/711/612. (In Indonesian)
S. Roiqoh, B. Zaman, and K. Kartono, “Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes [Aspect-Based Sentiment Analysis of JKN Mobile Application Reviews with Lexicon Based and Naïve Bayes],” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1582, 2023. https://dx.doi.org/10.30865/mib.v7i3.6194 (In Indonesian)
R. A. Rahman, V. H. Pranatawijaya, and N. N. K. Sari, “Analisis Sentimen Berbasis Aspek pada Ulasan Aplikasi Gojek [Aspect-Based Sentiment Analysis on Gojek App Reviews],” KONSTELASI Konvergensi Teknol. dan Sist. Inf., vol. 4, no. 1, pp. 70–82, Jun. 2024. https://dx.doi.org/10.24002/konstelasi.v4i1.8922 (In Indonesian)
Y. Kustiyahningsih and Y. Permana, “Penggunaan Latent Dirichlet Allocation (LDA) dan Support-Vector Machine (SVM) Untuk Menganalisis Sentimen Berdasarkan Aspek Dalam Ulasan Aplikasi EdLink [Use of Latent Dirichlet Allocation (LDA) and Support-Vector Machine (SVM) to Analyze Sentiment Based on Aspects in EdLink Application Reviews],” Teknika, vol. 13, no. 1, pp. 127–136, 2024. https://dx.doi.org/10.34148/teknika.v13i1.746 (In Indonesian)
K. A. F. A. Samah et al., “Unveiling perceptions: aspect-based sentiment analysis of Malaysia’s e-hailing reviews,” Indones. J. Electr. Eng. Comput. Sci., vol. 37, no. 3, p. 2077, Mar. 2025. https://dx.doi.org/10.11591/ijeecs.v37.i3.pp2077-2086
H. Mustakim and S. Priyanta, “Aspect-Based Sentiment Analysis of KAI Access Reviews Using NBC and SVM,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 2, p. 113, 2022. https://dx.doi.org/10.22146/ijccs.68903
P. N. Andono, Sunardi, R. A. Nugroho, and B. Harjo, “Aspect-Based Sentiment Analysis for Hotel Review Using LDA, Semantic Similarity, and BERT,” Int. J. Intell. Eng. Syst., vol. 15, no. 5, pp. 232–243, 2022. https://dx.doi.org/10.22266/ijies2022.1031.21
A. Hadi, M. Qamal, and Y. Afrillia, “Comparison of Random Forest Algorithm Classifier and Naïve Bayes Algorithm in Whatsapp Message Type Classification,” J. Renew. Energy, Electr. Comput. Eng., vol. 5, no. 1, pp. 9–17, Mar. 2025. https://dx.doi.org/10.29103/jreece.v5i1.21227
Rianto, A. B. Mutiara, E. P. Wibowo, and P. I. Santosa, “The Crowdsourcing Method to Normalize ‘Bahasa Alay’, a Case of Indonesian Corpus,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), IEEE, Nov. 2020, pp. 1–5. https://dx.doi.org/10.1109/ICIC50835.2020.9288534
H. Tuhuteru, L. P. Refialy, M. Laturake, and S. G. Pattirane, “Tourist Perceptions Through Sentiment Analysis to Support Tourism Development in Maluku Province,” J. Appl. Informatics Comput., vol. 8, no. 1, p. 119, 2024. https://dx.doi.org/10.30871/jaic.v8i1.6989
A. Gerliandeva, Y. H. Chrisnanto, and H. Ashaury, “Optimasi Klasifikasi Sentimen pada Komentar Online menggunakan Multinomial Naïve Bayes dan Ekstraksi Fitur TF-IDF serta N-grams Optimization of Sentiment Classification on Online Comments using Multinomial Naïve Bayes and TF-IDF Feature Extraction and N-g [Optimization of Sentiment Classification on Online Comments using Multinomial Naïve Bayes and TF-IDF Feature Extraction and N-grams],” Pekommas, vol. 9, no. X, pp. 259–272, 2024. https://dx.doi.org/10.56873/jpkm.v9i2.5585 (In Indonesian)
Y. HaCohen-Kerner, D. Miller, and Y. Yigal, “The influence of preprocessing on text classification using a bag-of-words representation,” PLoS One, vol. 15, no. 5, p. e0232525, May 2020. https://dx.doi.org/10.1371/journal.pone.0232525
Z. Sitorus, M. Saputra, S. N. Sofyan, and Susilawati, “Sentiment Analysis of Indonesian Community Towards Electric Motorcycles on Twitter Using Orange Data Mining,” INFOTECH J., vol. 10, no. 1, pp. 108–113, 2024. https://dx.doi.org/10.31949/infotech.v10i1.9374
E. S. Negara and D. Triadi, “Topic modeling using latent dirichlet allocation (LDA) on twitter data with Indonesia keyword,” Bull. Soc. Informatics Theory Appl., vol. 5, no. 2, pp. 124–132, 2022. https://dx.doi.org/10.31763/businta.v5i2.455
S. Dami and R. Alimardani, “An Aspect-Level Sentiment Analysis Based on LDA Topic Modeling,” J. Inf. Syst. Telecommun., vol. 12, no. 2, pp. 117–126, 2024.
N. Kalaitzidis, “What is the best way to obtain the optimal number of topics for a LDA-Model using Gensim?” [Online]. Available: https://stackoverflow.com/questions/32313062/what-is-the-best-way-to-obtain-the-optimal-number-of-topics-for-a-lda-model-usin
J. W. Iskandar and Y. Nataliani, “Perbandingan Naïve Bayes, SVM, dan k-NN untuk Analisis Sentimen Gadget Berbasis Aspek [Comparison of Naïve Bayes, SVM, and k-NN for Aspect-Based Gadget Sentiment Analysis],” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1120–1126, 2021. https://dx.doi.org/10.29207/resti.v5i6.3588 (In Indonesian)
M. Venugopalan and D. Gupta, “An enhanced guided LDA model augmented with BERT based semantic strength for aspect term extraction in sentiment analysis,” Knowledge-Based Syst., vol. 246, p. 108668, 2022. https://dx.doi.org/10.1016/j.knosys.2022.108668
B. Ozyurt and M. A. Akcayol, “A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA,” Expert Syst. Appl., vol. 168, p. 114231, 2021. https://dx.doi.org/10.1016/j.eswa.2020.114231
Z. A. Khan et al., “Developing Lexicons for Enhanced Sentiment Analysis in Software Engineering: An Innovative Multilingual Approach for Social Media Reviews,” Comput. Mater. Contin., vol. 79, no. 2, pp. 2771–2793, 2024. https://dx.doi.org/10.32604/cmc.2024.046897
A. Mahmoudi, D. Jemielniak, and L. Ciechanowski, “Assessing Accuracy: A Study of Lexicon and Rule-Based Packages in R and Python for Sentiment Analysis,” IEEE Access, vol. 12, no. November 2023, pp. 20169–20180, 2024. https://dx.doi.org/10.1109/ACCESS.2024.3353692
R. U. Fahmi, A. A. Arifiyanti, and T. L. I. Sugata, “Analisis Sentimen Berbasis Aspek pada Ulasan Aplikasi Midi Kriing Menggunakan Support Vector Machine (SVM) [Aspect-Based Sentiment Analysis on Midi Kriing Application Review Using Support Vector Machine (SVM)],” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 4831–4839, May 2025. https://dx.doi.org/10.36040/jati.v9i3.13783 (In Indonesian)
D. I. Sumantiawan, J. E. Suseno, and W. A. Syafei, “Sentiment Analysis of Customer Reviews Using Support Vector Machine and Smote-Tomek Links For Identify Customer Satisfaction,” J. Sist. Info. Bisnis, vol. 13, no. 1, pp. 1–9, 2023. https://dx.doi.org/10.21456/vol13iss1pp1-9
D. Rahmawati, E. D. Wahyuni, and D. S. Y. Kartika, “Analisis Sentimen Berbasis Aspek pada Respons Survei Open-Ended Menggunakan LDA, dan SVM [Aspect-Based Sentiment Analysis on Open-Ended Survey Responses Using LDA, and SVM],” JATI (Jurnal Mhs. Tek. Inform., vol. 9, no. 3, pp. 4628–4634, May 2025. https://dx.doi.org/10.36040/jati.v9i3.13723 (In Indonesian)
S. Raharjo, R. Wardoyo, and A. E. Putra, “Rule based sentence segmentation of Indonesian language,” J. Eng. Appl. Sci., vol. 13, no. 21, pp. 8986–8992, 2018. https://dx.doi.org/10.3923/jeasci.2018.8986-8992
Y. Seo, S. Song, R. Heo, J. Kim, and D. Lee, “Make Compound Sentences Simple to Analyze: Learning to Split Sentences for Aspect-based Sentiment Analysis,” EMNLP 2024 - 2024 Conf. Empir. Methods Nat. Lang. Process. Find. EMNLP 2024, pp. 11171–11184, 2024.
Article Metrics


This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.