The Role of VADER and SentiWordNet Labeling in Naïve Bayes Accuracy for Sentiment Analysis of Rice Price Increases

Ihtiar Nur Furqon, Dewi Soyusiawaty

Submitted : 2025-01-14, Published : 2025-02-25.

Abstract

The surge in rice prices in Indonesia in 2024 is a critical issue affecting social welfare and national food security, particularly amid rising rice imports. This study evaluates public sentiment on Twitter using the Naïve Bayes method and compares the effectiveness of two automated labeling methods, VADER and SentiWordNet, in improving sentiment analysis accuracy. The research is significant due to the limited literature on automated labeling comparisons, especially in food price crises. The methodology includes data collection, preprocessing, translation, sentiment labeling using VADER and SentiWordNet, TF-IDF feature extraction, Naïve Bayes classification, and performance evaluation across different data split ratios: 60% training and 40% testing, 70% training and 30% testing, 80% training and 20% testing, and 90% training and 10% testing. Results show that VADER excels in detecting positive sentiments, achieving 74.42% accuracy at a 90:10 split but struggles with negative sentiment identification, with a highest F1-score of 56.58%. SentiWordNet performs better for positive sentiment detection, reaching 77.86% accuracy and 96.22% recall at an 80:20 split but yields a low F1-score of 32.15% for negative sentiments. In conclusion, VADER is suitable for balanced sentiment detection, while SentiWordNet is more effective for identifying positive sentiments.

Keywords

Sentiment Analysis; Naïve Bayes; VADER; SentiWordNet; TF-IDF.

Full Text:

PDF

References

Pusat Data dan Sistem Informasi, “Perbandingan Harga Barang Kebutuhan Pokok,” 2025 [Online]. Available: https://sp2kp.kemendag.go.id/

C. M. Annur, “Jumlah Pengguna Twitter Indonesia Duduki Peringkat ke-4 Dunia per Juli 2023,” Katadata Media Network. Accessed: Apr. 27, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/11/01/jumlah-pengguna-twitter-indonesia-duduki-peringkat-ke-4-dunia-per-juli-2023

D. Rachmawati, “Indef: Warganet Mengeluhkan Kenaikan Harga Bahan Pokok di Twitter,” EKONOMI BISNIS.COM. Accessed: Apr. 27, 2024. [Online]. Available: https://ekonomi.bisnis.com/read/20240306/12/1746820/indef-warganet-mengeluhkan-kenaikan-harga-bahan-pokok-di-twitter

A. Rahman et al., “Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen,” JEPIN: Jurnal Edukasi dan Penelitian Informatika, vol. 8, no. 2, 2022. https://doi.org/10.26418/jp.v8i2.54704

F. Sidik, I. Suhada, A. H. Anwar, and F. N. Hasan, “Analisis Sentimen Terhadap Pembelajaran Daring dengan Algoritma Naïve Bayes Classifier,” Jurnal Linguistik Komputasional (JLK), vol. 5, no. 1, p. 34 2022. http://dx.doi.org/10.26418/jlk.v5i1.79

N. Satya Marga, A. Rahman Isnain, and D. Alita, “Sentimen analisis tentang kebijakan pemerintah terhadap kasus corona menggunakan metode Naive Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 2, no. 4, pp. 453–463, 2021. http://dx.doi.org/10.33365/jatika.v2i4.1602

C. F. Hasri and D. Alita, “Penerapan metode naïve bayes classifier dan support vector machine pada analisis sentimen terhadap dampak virus corona di Twitter,” Jurnal Informatika dan Rekayasa Perangkat Lunak (JATIKA), vol. 3, no. 2, pp. 145–160, 2022. https://doi.org/10.33365/jatika.v3i2.2026

A. Perdana, A. Hermawan, and D. Avianto, “Analisis Sentimen Terhadap Isu Penundaan Pemilu di Twitter Menggunakan Naive Bayes Clasifier,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 2, pp. 195–200, 2022. https://doi.org/10.32736/sisfokom.v11i2.1412

N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, 2021. https://doi.org/10.29207/resti.v5i1.2587

F. Zamachsari, GV. Saragih, Susafa'ati, W. Gata, “Analisis Sentimen Pemindahan Ibu Kota Negara dengan Feature Selection Algoritma Naive Bayes dan Support Vector Machine,” JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 1, no. 3, pp. 504–512, 2020. https://doi.org/10.29207/resti.v4i3.1942

N. Putu Gita Naraswati, D. Cindy Rosmilda, D. Desinta, F. Khairi, R. Damaiyanti, and R. Nooraeni, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 1, 2021. https://doi.org/10.32520/stmsi.v10i1.1179

A. H. Pratama and M. Hayaty, “Performance of Lexical Resource and Manual Labeling on Long Short-Term Memory Model for Text Classification,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), vol. 9, no. 1, pp. 74–84, 2023. https://doi.org/10.26555/jiteki.v9i1.25375

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” PETIR, vol. 15, no. 2, pp. 264–275, 2022. https://doi.org/10.33322/petir.v15i2.1733

P. C. Sridevi and T. Velmurugan, “Twitter Sentiment Analysis of COVID-19 Vaccination Integrating SenticNet-7 and SentiWordNet-Adjusted VADER Models,” International Journal of Computer Information Systems and Industrial Management Applications, vol. 16, no. 2, 2024. [Online]. Available: https://cspub-ijcisim.org/index.php/ijcisim/article/view/630

H. F. Rachman and Imamah, “Pendekatan Data Science untuk Mengukur Empati Masyarakat terhadap Pandemi Menggunakan Analisis Sentimen dan Seleksi Fitur,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 3, 2022. https://doi.org/10.26418/jp.v8i3.56655

Nopan and E. Mailoa, “Perbandingan Beberapa Algoritma Machine Learning Dalam Analisis Sentimen Terkait Pemilihan Presiden RI 2024,” Jutisi: Jurnal Ilmiah Teknik Informatika dan Sistem Informasi, vol. 13, no. 2, 2024. http://dx.doi.org/10.35889/jutisi.v13i2.1980

R. Chandrasekaran, R. Desai, H. Shah, V. Kumar, and E. Moustakas, “Examining Public Sentiments and Attitudes Toward COVID-19 Vaccination: Infoveillance Study Using Twitter Posts,” JMIR Infodemiology, vol. 2, no. 1, 2022. https://doi.org/10.2196/33909

S. Yousefinaghani, R. Dara, S. Mubareka, A. Papadopoulos, and S. Sharif, “An analysis of COVID-19 vaccine sentiments and opinions on Twitter,” International Journal of Infectious Diseases, vol. 108, pp. 256–262, 2021. https://doi.org/10.1016/J.IJID.2021.05.059

K. Mohamed Ridhwan and C. A. Hargreaves, “Leveraging Twitter data to understand public sentiment for the COVID‐19 outbreak in Singapore,” International Journal of Information Management Data Insights, vol. 1, no. 2, p. 100021, 2021. https://doi.org/10.1016/J.JJIMEI.2021.100021

M. F. Mushtaq, M. M. S. Fareed, M. Almutairi, S. Ullah, G. Ahmed, and K. Munir, “Analyses of Public Attention and Sentiments towards Different COVID-19 Vaccines Using Data Mining Techniques,” Vaccines (Basel), vol. 10, no. 5, 2022. https://doi.org/10.3390/vaccines10050661

V. A. Rao, K. Anuranjana, and R. Mamidi, “A sentiwordnet strategy for curriculum learning in sentiment analysis,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, 2020, pp. 170–178. https://doi.org/10.1007/978-3-030-51310-8_16

T. A. Tran, J. Duangsuwan, and W. Wettayaprasit, “A new approach for extracting and scoring aspect using SentiWordNet,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 22, no. 3, pp. 1731–1738, 2021. https://doi.org/10.11591/ijeecs.v22i3.pp1731-1738

A. Dadhich and B. Thankachan, “Opinion Classification of Product Reviews Using Naïve Bayes, Logistic Regression and Sentiwordnet: Challenges and Survey,” IOP Conf Ser Mater Sci Eng, vol. 1099, no. 1, p. 012071, 2021. https://doi.org/10.1088/1757-899x/1099/1/012071

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 802–808, 2021. https://doi.org/10.29207/resti.v5i4.3308

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, pp. 785–795, 2022. https://doi.org/10.35957/jatisi.v9i2.1835

Y. Astuti, I. R. Wulandarim, A. R. Putra, and N. Khoromadhaona, “Naïve Bayes untuk Prediksi Tingkat Pemahaman Kuliah Online Terhadap Mata Kuliah Algoritma Struktur Data,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 8, no. 1, 2022. https://doi.org/10.26418/jp.v8i1.48848

A. Rifa’i, Herry. Sujaini, and P. Dian, “Sentiment Analysis Objek Wisata Kalimantan Barat pada Google Maps Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 7, no. 3, 2021. https://doi.org/10.26418/jp.v7i3.48132

Article Metrics

Abstract view: 100 times
Download     : 46   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.