Analisis dan Evaluasi Kondisi Oli Transformator Berdasar Pengujian DGA dan BDV

Muhammad Ali, Firdha Kriska

Submitted : 2024-03-23, Published : 2024-08-02.

Abstract

Transformator (Trafo) merupakan komponen utama sistem tenaga Listrik. Gangguan fungsi trafo dapat menyebabkan terjadinya blackout pada sistem tenaga listrik. Trafo bekerja secara kontinu selama dua puluh empat jam sehingga perlu pemeliharaan preventif, korektif maupun prediktif. Salah satu aspek penting pada oli trafo yaitu oli yang berfungsi sebagai pendingin dan isolasi belitan. Kegagalan fungsi trafo banyak disebabkan oleh menurunnya kualitas oli. Artikel ini akan membahas analisis kondisi oli trafo berdasar pengujian Dissolve Gas Analysis (DGA) dan Breakdown Voltage Test  (BDV). Tahap penelitian yaitu: 1) Analisis kebutuhan yang dilakukan melalui pengamatan, 2) pengambilan sampel oli trafo, 3) pengukuran dan pengujian DGA dan BDV, 4) analisis data dan 5) rekomendasi. Hasil penelitian menunjukkan bahwa kondisi oli trafo masuk pada status DGA 3 yang diindikasikan adanya peningkatan jumlah gas terlarut yang melebihi batas yang diizinkan. Hasil pengujian tegangan tembus oli trafo juga berada di atas batas standar. Berdasarkan kondisi ini maka perlu dilakukan pemurnian atau penggantian oli untuk memastikan trafo dapat bekerja dengan baik.

Keywords

oli, trafo, DGA, BDV,

Full Text:

PDF

References

Wu, X., Shen, J., Li, Y., Lee, K. Y., “Steam power plant configuration, design, and control,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 4, no. 6, hal. 537-563, 2015. https://doi.org/10.1002/wene.161

Tanuma, T., “Introduction to steam turbines for power plants,” In Advances in Steam Turbines for Modern Power Plants, Woodhead Publishing, hal. 3-10, 2015.
https://doi.org/10.1016/B978-0-12-824359-6.00024-X

Ali, M., Arifin, “Redesign The Electricity System of PT. Barata Indonesia To Reduce Annual Power Loss,” Journal of Physics: Conference Series, vol. 2111, In 4th International Conference on Electrical, Electronics, Informatics, and Vocational Education (ICE-ELINVO 2021), 012038, 2021. https://doi.org/10.1088/1742-6596/2111/1/012038

Murugan, R., Ramasamy, R., “Understanding the power transformer component failures for health index-based maintenance planning in electric utilities,” Engineering Failure Analysis, vol. 96, hal. 274-288, 2019. https://doi.org/10.1016/j.engfailanal.2018.10.011

Chu, D., Lux, A., “Online monitoring of power transformers and components: a review of critical parameters,” In Proceedings: Electrical insulation conference and electrical manufacturing and coil winding conference, (Cat. No. 99CH37035), hal. 669-675, IEEE Xplore, 2002. https://doi.org/10.1109/EEIC.1999.826290

Ye, H., Tian, X., Wu, H., Li, Y., Wu, Z., Ma, G., Li, C., “Insulation characteristics of deformed transformer winding under transient impulse,” In 2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon (CEIDP), hal. 552-555. IEEE 2017. https://doi.org/10.1109/CEIDP.2017.8257550

Aslam, M., Haq, I. U., Rehan, M. S., Ali, F., Basit, A., Khan, M. I., Arbab, M. N., “Health analysis of transformer winding insulation through thermal monitoring and fast Fourier transform (FFT) power spectrum,” IEEE Access, vol.9, hal. 114207-17, 2021. https://doi.org/10.1109/ACCESS.2021.3104033

Yousof, M. F. M., Saha, T. K., Ekanayake, C., “Investigating the sensitivity of frequency response analysis on transformer winding structure,” In 2014 IEEE PES General Meeting| Conference & Exposition, hal. 1-5, 2014. https://doi.org/10.1109/PESGM.2014.6938945

Faiz, J., & Soleimani, M., “Dissolved gas analysis evaluation in electric power transformers using conventional methods a review,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, no. 2, hal. 1239-1248, 2017. https://doi.org/10.1109/TDEI.2017.005959

Golarz, J., “Understanding dissolved gas analysis (DGA) techniques and interpretations,” In 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), hal. 1-5, IEEE, 2016. https://doi.org/10.1109/TDC.2016.7519852

Bustamante, S., Manana, M., Arroyo, A., Castro, P., Laso, A., Martinez, R., “Dissolved gas analysis equipment for online monitoring of transformer oil: A review,” Sensors, vol. 19, no. 19, hal. 4057, 2019. https://doi.org/10.3390/s19194057

Senoussaoui, M. E. A., Brahami, M., & Fofana, I., “Combining and comparing various machine‐learning algorithms to improve dissolved gas analysis interpretation. IET Generation, Transmission & Distribution,” IET Generation, Transmission & Distribution, vol. 12, no. 15, hal. 3673-3679, 2018. https://doi.org/10.1049/iet-gtd.2018.0059

De Faria Jr, H., Costa, J. G. S., Olivas, J. L. M., “A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis,” Renewable and sustainable energy reviews, vol. 46, hal. 201-209, 2015. https://doi.org/10.1016/j.rser.2015.02.052

Wattakapaiboon, W., & Pattanadech, N., “The state of the art for dissolved gas analysis is based on interpretation techniques,” In 2016 International Conference on Condition Monitoring and Diagnosis (CMD), hal. 60-63, IEEE, 2016. https://doi.org/10.1109/CMD.2016.7757763

Ali, M. S., Omar, A., Jaafar, A. S. A., Mohamed, S. H., “Conventional methods of dissolved gas analysis using oil-immersed power transformer for fault diagnosis: A review,” Electric Power Systems Research, vol. 216, hal. 109064, 2023. https://doi.org/10.1016/j.epsr.2022.109064

Ali, M, Y Hermawan, “Re-design AC Power Failure Signal to Minimize False Signal of Emergency Shutdown System for Ethylene Plant,” Journal of Physics: Conference Series, vol. 2406, no. 1, hal. 012011, 2022. https://doi.org/10.1088/1742-6596/2406/1/012011

IEC 60422-2013, “International Standard Mineral Insulating Oils in Electrical Equipment – Supervision and Maintenance Guidance,” International Electrotechnical Commission, 2013.

IEC 60599-2022, “International Standard Mineral Oil-Filled Electrical Equipment in Service - Guidance on Interpreting dissolved and free gases analysis,” International Electrotechnical Commission, 2022.

IEEE C57.104, “IEEE Guide for the Interpretation of Gases Generated in Mineral Oil Immersed Transformers,” Institute of Electrical and Electronics Engineers, 2019. https://doi.org/10.1109/IEEESTD.2019.8890040

IEEE Power & Society, “IEEE Standard Terminology for Power and Distribution Transformers,” IEEE Power & Energy Society, 2010.

Murugan, R., Ramasamy, R., “Understanding the Power Transformer Component Failures for Health Index-Based Maintenance Planning in Electric Utilities,” Engineering Failure Analysis, vol. 96, hal. 274–288, 2019. https://doi.org/10.1016/j.engfailanal.2018.10.011

Siada, A. A., “Power Transformer Condition Monitoring and Diagnosis (1st ed.),” Institution of Engineering and Technology, 2018. https://doi.org/10.1016/j.ijepes.2016.01.019

Vahidi, B., & Teymouri, A., “Quality Confirmation Tests for Power Transformer Insulation Systems (1st ed.),” Springer Nature, 2019. https://doi.org/10.1007/978-3-030-19693-6

Widyastuti, C., Alvin Wisnuaji, R., “Analisis Tegangan tembus Minyak Transformator di PT PLN (Persero) Bogor,” Elektron Jurnal Ilmiah, vol. 11, no. 2, hal. 75–78, 2019. https://doi.org/10.30630/eji.11.2.128

Negara, I. M. Y., Asfani, D. A., Fahmi, D., Dewira, R. F., Wahyudi, M., Giri, M. Y. P., “Analysis of breakdown voltage test on transformer oil based on dissolved gas analysis test result,” JAREE (Journal on Advanced Research in Electrical Engineering), vol. 2, no. 2, 2018. https://doi.org/10.12962/j25796216.v2.i2.55

Article Metrics

Abstract view: 206 times
Download     : 222   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.