Optimasi Proses Gasifikasi Menggunakan Logika Fuzzy Mamdani

Bagus Fatkhurrozi, Sapto Nisworo, Sumardi Sumardi

Submitted : 2022-06-10, Published : 2022-07-12.

Abstract

This study aims to test the performance of fuzzy logic in the gasification process. Gasification is the process of converting solids into flammable gases. The gas produced becomes an alternative energy source, namely the Waste Power Plant (PLTSa). The research applies Mamdani's Fuzzy logic. Fuzzy logic was created using Matlab R2018b software. The results obtained indicate that the Mean Absolute Error (MAE) output of H2 on fuzzy logic training data is 6.57. The test results for CO fuzzy output MAE value of 1.12. The test results on CO2 MAE fuzzy are 1.18. In the CH4 test, the MAE fuzzy output is 0,84.

Keywords

gasification, MAE, Mamdani

Full Text:

PDF

References

D. Mandasari, “Penentuan Teknis Penutupan/Rehabilitasi TPA Berdasarkan Penilaian Indeks Risiko Lingkungan di TPA Banyuurip, Desa Banyuurip, Kecamatan Tegalrejo, Kabupaten Magelang Provinsi Jawa Tengah,” UPN “VETERAN” YOGYAKARTA, 2017. [Online]. Available: http://eprints.upnyk.ac.id/12355/

Syamsul Ma’arif, “Potensi Energi Listrik Hasil Gasifikasi Sampah Organik dari Wisatawan di Pantai Parangtritis,” 2019.

K. A. Riza Samsinar, “Studi Perencanaan Pembangkit Listrik Tenaga Sampah Kapasitas 115 Kw (Studi Kasus Kota Tegal),” elektum, vol. 15 No. 2, 2018, doi: https://doi.org/10.24853/elektum.15.2.%25p.

M. Perinov, “Analisis Potensi Sampah sebagai Bahan Baku Pembangkit Listrik Tenaga Sampah (PLTSa) di Pekanbaru,” SainETIn, vol. 1 No. 1, pp. 9–16, 2016, [Online]. Available: https://repository.unilak.ac.id/377/

A. T. Prasetiyo, “Studi Evaluasi Pembangkit Listrik Tenaga Sampah di Tempat Pengolahan Sampah Terpadu Bantargebang,” J. online Mhs. Bid. Tek. Elektro, vol. 1 No. 1, 2017, [Online]. Available: https://jom.unpak.ac.id/index.php/teknikelektro/article/view/1009

U. I. F. Styana, Rosiana Indrawati, and Muhammad Sigit Cahyono, “Karakterisasi Proses Gasifikasi Sampah Organik Dengan Variasi Jenis Bahan,” J. Engine Energi, Manufaktur, dan Mater., vol. 3 No.1, pp. 29–38, 2019, [Online]. Available: https://ejournal.up45.ac.id/index.php/Jurnal_ENGINE/article/view/495

M. S. C. Wira Widyawidura, Ratih Puspita Liestiono and M. S. Agus Prasetya, “Pengaruh Jenis Bahan Terhadap Proses Gasifikasi Sampah Organik Menggunakan Updraft Fixed Bed Reactor,” J. Engine Energi, Manufaktur, dan Mater., vol. 1 No. 2, pp. 30–37, 2017, [Online]. Available: https://ejournal.up45.ac.id/index.php/Jurnal_ENGINE/article/view/258

S. Consonni and F. Viganò, “Waste gasification vs. conventional Waste-To-Energy: A comparative evaluation of two commercial technologies,” Waste Manag., vol. 32, no. 4, pp. 653–666, Apr. 2012, doi: 10.1016/j.wasman.2011.12.019.

A. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renew. Sustain. Energy Rev., vol. 76, pp. 989–1003, Sep. 2017, doi: 10.1016/j.rser.2017.03.112.

M. Puig-Arnavat, J. A. Hernández, J. C. Bruno, and A. Coronas, “Artificial neural network models for biomass gasification in fluidized bed gasifiers,” Biomass and Bioenergy, vol. 49, pp. 279–289, Feb. 2013, doi: 10.1016/j.biombioe.2012.12.012.

H. Rezk, A. Inayat, M. A. Abdelkareem, A. G. Olabi, and A. M. Nassef, “Optimal operating parameter determination based on fuzzy logic modeling and marine predators algorithm approaches to improve the methane production via biomass gasification,” Energy, vol. 239, p. 122072, Jan. 2022, doi: 10.1016/j.energy.2021.122072.

Hidayat, A. N., Fatkhurrozi, B., & Nawawi, I. (2020). Implementasi Logika Fuzzy pada Kekuatan Sinyal yang Diterima Antena Viasat X-Band. Aviation Electronics, Information Technology, Telecommunications, Electricals, Controls, 2(2), 91-102.

N. K. Ariasih, I. P. A. Bayupati, and I. K. G. Darmaputra, “Sistem Pendukung Keputusan Pemilihan Lokasi TPA Sampah Menggunakan Metode Min_Max Inference Fuzzy,” Maj. Ilm. Teknol. Elektro, vol. 14, no. 1, Jun. 2015, doi: 10.24843/MITE.2015.v14i01p02.

W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 324, p. 012049, Mar. 2018, doi: 10.1088/1757-899X/324/1/012049.

Article Metrics

Abstract view: 356 times
Download     : 217   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks