Fault Tree Analysis of Nose Landing Gear Failure Function of Boeing 737-800 Next Generation Aircraft
Submitted : 2025-01-21, Published : 2025-07-01.
Abstract
The retract actuator is one of the main parts of the landing gear, which functions to retract or extend. The retract actuator must be free in its operation and its movement must also be smooth. The aircraft experiences a functional failure if the retract actuator is in a slow to retract condition, where there is a slowdown during retract and extend. Careful initial handling is required and in accordance with aircraft maintenance handling procedures. Indications of initial failure can be obtained by connecting the same component maintenance log book on the same type of aircraft. This study uses the Fault Tree Analysis (FTA) method on the Boeing 737-800 Next Generation aircraft in the Merpati Maintenance Facility hangar. The source of data entered comes from the component maintenance log book on the aircraft with the same type. After the analysis was carried out, the minimum cut set results were obtained with calculations consisting of 18 basic events.
Keywords
References
A. G. Nugroho and E. Setijono, “Efisiensi Fasilitas Perawatan Pesawat Udara Terhadap Ruang Slot Di Hangar 4 Gmf Aeroasia (Studi Kasus Untuk Pesawat Boeing 737-800 Ng),” Semin. Nas. Inov. Teknol. Penerbangan Tahun, no. September, 2018.
M. H. Rifa’i and S. Riadi, “Analisis Pengendalian Cost Of Poor Quality Pada Perawatan Pesawat Wide Body Dinas Base Maintenance Menggunakan Metode Dmaic Di PT. GMF Aeroasia Tbk,” ISTA Online Technol. J., vol. 04, no. 01, pp. 69–77, 2023, [Online]. Available: http://iontech.ista.ac.id/index.php/iontech
P. R. de O. da Costa, A. Akçay, Y. Zhang, and U. Kaymak, “Remaining useful lifetime prediction via deep domain adaptation,” Reliab. Eng. Syst. Saf., vol. 195, 2020, doi: 10.1016/j.ress.2019.106682.
W. Booyse, D. N. Wilke, and S. Heyns, “Deep digital twins for detection, diagnostics and prognostics,” Mech. Syst. Signal Process., vol. 140, p. 106612, 2020, doi: 10.1016/j.ymssp.2019.106612.
C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective Deep Belief Networks Ensemble for Remaining Useful Life Estimation in Prognostics,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 10, pp. 2306–2318, 2017, doi: 10.1109/TNNLS.2016.2582798.
C. Hu, B. D. Youn, P. Wang, and J. Taek Yoon, “Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life,” Reliab. Eng. Syst. Saf., vol. 103, pp. 120–135, 2012, doi: 10.1016/j.ress.2012.03.008.
Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A systematic review from data acquisition to RUL prediction,” Mech. Syst. Signal Process., vol. 104, pp. 799–834, 2018, doi: 10.1016/j.ymssp.2017.11.016.
M. A. Chao, C. Kulkarni, K. Goebel, and O. Fink, “Aircraft engine run-to-failure dataset under real flight conditions for prognostics and diagnostics,” Data, vol. 6, no. 1, pp. 1–14, 2021, doi: 10.3390/data6010005.
M. A. Nurdin, H. L. Latif, and F. Sabur, “Penerapan Augmented Reality Pada Procedure Removal dan Installation Engine Pesawat Cessna 152,” JAMETS J. Aircr. Maint. Eng. Aviat. Technol., vol. 2, no. 2, pp. 90–101, 2023, doi: 10.46509/jamets.v2i2.467.
A. Pambekti, I. Lukito, C. S. Budiono, and R. Kurniawan, “Anti-Icing Engine Damage Analysis Boeing 737 - 800 Ng With Fault Tree Analysis Method,” J. Business, Soc. Technol., vol. 3, no. 1, pp. 19–26, 2022, doi: 10.46799/jbt.v3i1.65.
I. Lukito, A. Pambekti, C. S. Budiono, R. Kurniawan, A. Prakoso, and F. Mizan, “Analisis Kegagalan Fungsi Traffic Alert and Collision Avoidance System Boeing 737-800 Next Garuda Indonesia dan Indentifikasi Penyebab Kegagalan Dengan Metode Fault Tree,” Conf. Senat. STT Adisutjipto Yogyakarta, vol. 7, pp. 27–32, 2022, doi: 10.28989/senatik.v7i0.459.
A. Pambekti, R. Kurniawan, A. Prakoso, C. S. Budiono, I. Lukito, and H. M. Arazi, “Analisis Kerusakan APU Fuel System Pada Pesawat B737-500 Dengan Metode Fault Tree Analysis,” vol. VII, pp. 21–26, 2022.
E. Bobbio, A. Portinale, L. Minichino, M. Ciancamerla, “Improving the Analysis of Dependable Systems by Mapping Fault Trees into Bayesian Networks. Realiability Engineering & System Safety,” Reliab. Eng. Syst. Saf. 71, vol. 71, pp. 249–260, 2001.
M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad, “Non deterministic repairable fault trees for computing optimal repair strategy,” VALUETOOLS 2008 - 3rd Int. Conf. Perform. Eval. Methodol. Tools, 2008, doi: 10.4108/ICST.VALUETOOLS2008.4411.
A. Anand and A. K. Somani, “Hierarchical analysis of fault trees with dependencies, using decomposition,” Proc. Annu. Reliab. Maintainab. Symp., pp. 69–75, 1998, doi: 10.1109/rams.1998.653591.
R. Adler et al., “Integration of component fault trees into the UML,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6627 LNCS, pp. 312–327, 2011, doi: 10.1007/978-3-642-21210-9_30.
S. Kabir, “An overview of fault tree analysis and its application in model based dependability analysis,” Expert Syst. Appl., vol. 77, pp. 114–135, 2017, doi: 10.1016/j.eswa.2017.01.058.
Article Metrics



This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.