Fish detection using morphological approach based on K means segmentation

Shoffan Saifullah, Andiko Putro Suryotomo, Bambang Yuwono

Submitted : 2021-04-27, Published : 2021-05-11.


Image segmentation is a concept that is often used for object detection. This detection has difficulty detecting objects with backgrounds that have many colors and even have a color similar to the object being detected. This study aims to detect fish using segmentation, namely segmenting fish images using k-means clustering. The segmentation process is processed by improving the image first. The initial process is preprocessing to improve the image. Preprocessing is done twice, before segmentation using k-means and after. Preprocessing stage 1 using resize and reshape. Whereas after k-means is the contrast-limited adaptive histogram equalization. Preprocessing results are segmented using k-means clustering. The K-means concept classifies images using segments between the object and the background (using k = 8). The final step is the morphological process with open and close operations to obtain fish contours using black and white images based on grayscale images from color images. Based on the experimental results, the process can run well, with the ssim value close to 1, which means that image information does not change. Processed objects provide a clear picture of fish objects so that this k-means segmentation can help detect fish objects.


fish detection; histogram equalization; K-means; morphology; segmentation

Full Text:



R. Priyadharsini and T. S. Sharmila, “Object Detection In Underwater Acoustic Images Using Edge Based Segmentation Method,” Procedia Comput. Sci., vol. 165, pp. 759–765, 2019, doi: 10.1016/j.procs.2020.01.015.

A. Yudhana, Sunardi, and S. Saifullah, “Segmentation comparing eggs watermarking image and original image,” Bull. Electr. Eng. Informatics, vol. 6, no. 1, pp. 47–53, 2017, doi: 10.11591/eei.v6i1.595.

S. Saifullah, “Segmentasi Citra Menggunakan Metode Watershed Transform Berdasarkan Image Enhancement Dalam Mendeteksi Embrio Telur,” Syst. Inf. Syst. Informatics J., vol. 5, no. 2, pp. 53–60, Mar. 2020, doi: 10.29080/systemic.v5i2.798.

A. Yudhana, S. Sunardi, and S. Saifullah, “Perbandingan segmentasi pada citra asli dan citra kompresi wavelet untuk identifikasi telur,” Ilk. J. Ilm., no. January, 2016.

S. Cui, Y. Zhou, Y. Wang, and L. Zhai, “Fish Detection Using Deep Learning,” Appl. Comput. Intell. Soft Comput., vol. 2020, 2020, doi: 10.1155/2020/3738108.

F. Rossi, A. Benso, S. Di Carlo, G. Politano, A. Savino, and P. L. Acutis, “FishAPP : A mobile App to detect fish falsification through image processing and machine learning techniques,” IEEE Int. Conf. Autom. Qual. Testing, Robot. AQTR, vol. 20, no. 1, pp. 1–6, 2016.

A. Salman et al., “Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system,” ICES J. Mar. Sci., vol. 77, no. 4, pp. 1295–1307, Jul. 2020, doi: 10.1093/icesjms/fsz025.

M. Sung, S.-C. Yu, and Y. Girdhar, “Vision based real-time fish detection using convolutional neural network,” in OCEANS 2017 - Aberdeen, Jun. 2017, pp. 1–6, doi: 10.1109/OCEANSE.2017.8084889.

L. Yang et al., “Computer Vision Models in Intelligent Aquaculture with Emphasis on Fish Detection and Behavior Analysis: A Review,” Arch. Comput. Methods Eng., Sep. 2020, doi: 10.1007/s11831-020-09486-2.

A. Salman, S. Maqbool, A. H. Khan, A. Jalal, and F. Shafait, “Real-time fish detection in complex backgrounds using probabilistic background modelling,” Ecol. Inform., vol. 51, pp. 44–51, May 2019, doi: 10.1016/j.ecoinf.2019.02.011.

R. Garcia et al., “Automatic segmentation of fish using deep learning with application to fish size measurement,” ICES J. Mar. Sci., vol. 77, no. 4, pp. 1354–1366, Jul. 2020, doi: 10.1093/icesjms/fsz186.

A. Ibrahim, A. Ahmed, S. Hussein, and A. E. Hassanien, “Fish Image Segmentation Using Salp Swarm Algorithm,” 2018, pp. 42–51.

D.-B. Sheng, S.-B. Kim, T.-H. Nguyen, D.-H. Kim, T.-S. Gao, and H.-K. Kim, “Fish Injured Rate Measurement Using Color Image Segmentation Method Based on K-Means Clustering Algorithm and Otsu’s Threshold Algorithm,” J. Korea Soc. Power Syst. Eng., vol. 20, no. 4, pp. 32–37, Aug. 2016, doi: 10.9726/kspse.2016.20.4.032.

H. Yao, Q. Duan, D. Li, and J. Wang, “An improved K-means clustering algorithm for fish image segmentation,” Math. Comput. Model., vol. 58, no. 3–4, pp. 790–798, Aug. 2013, doi: 10.1016/j.mcm.2012.12.025.

Sunardi, A. Yudhana, and S. Saifullah, “Identity analysis of egg based on digital and thermal imaging: Image processing and counting object concept,” Int. J. Electr. Comput. Eng., vol. 7, no. 1, pp. 200–208, 2017, doi: 10.11591/ijece.v7i1.12718.

S. Saifullah, “Segmentation for embryonated Egg Images Detection using the K-means Algorithm in Image Processing,” 2020.

M. T. Tran, H. H. Nguyen, J. Rantung, H. K. Kim, S. J. Oh, and S. B. Kim, “A New Approach of 2D Measurement of Injury Rate on Fish by a Modified K-means Clustering Algorithm Based on L*A*B* Color Space,” in Duy V., Dao T., Zelinka I., Kim S., Phuong T. (eds) AETA 2017 - Recent Advances in Electrical Engineering and Related Sciences: Theory and Application. AETA 2017. Lecture Notes in Electrical Engineering, 2018, pp. 324–333.

S. Saifullah, “K-means Segmentation Based-on Lab Color Space for Embryo Egg Detection,” 2020.

D. S. Y. Kartika and D. Herumurti, “Koi fish classification based on HSV color space,” in 2016 International Conference on Information & Communication Technology and Systems (ICTS), 2016, pp. 96–100, doi: 10.1109/ICTS.2016.7910280.

S. Saifullah, “K-Means Clustering for Egg Embryo’s Detection Based-on Statistical Feature Extraction Approach of Candling Eggs Image,” SINERGI, vol. 25, no. 1, pp. 43–50, 2020, doi: 10.22441/sinergi.2021.1.006.

S. Saifullah, Sunardi, and A. Yudhana, “Analisis Ekstraks Ciri Fertilitas Telur Ayam Kampung Dengan Grey Level Cooccurrence Matrix,” J. Nas. Tek. Elektro, vol. 6, no. 2, pp. 66–75, 2017, doi: 10.20449/jnte.v6i2.376.

A. B. W. Putra, S. Supriadi, A. P. Wibawa, A. Pranolo, and A. F. O. Gaffar, “Modification of a gray-level dynamic range based on a number of binary bit representation for image compression,” Sci. Inf. Technol. Lett., vol. 1, no. 1, pp. 9–16, Apr. 2020, doi: 10.31763/sitech.v1i1.17.

R. Jamal, K. Manaa, M. Rabee’a, and L. Khalaf, “Traffic control by digital imaging cameras☆,” in Emerging Trends in Image Processing, Computer Vision and Pattern Recognition, Elsevier, 2015, pp. 231–247.

H. Y. Yang, J. X. Zhao, G. H. Xu, and S. Liu, “A Survey of Color Image Segmentation Methods,” Softw. Guid., vol. 17, no. 4, pp. 1–5, 2018.

M. Caron, P. Bojanowski, J. Mairal, and A. Joulin, “Unsupervised pre-training of image features on non-curated data,” in Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 2959–2968.

B. Nguyen and B. De Baets, “Kernel-Based Distance Metric Learning for Supervised k -Means Clustering,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 10, pp. 3084–3095, Oct. 2019, doi: 10.1109/TNNLS.2018.2890021.

R. Garcia-Dias, S. Vieira, W. H. Lopez Pinaya, and A. Mechelli, “Clustering analysis,” in Machine Learning, Elsevier, 2020, pp. 227–247.

R. Loohach and K. Garg, “Effect of distance functions on k-means clustering algorithm,” Int. J. Comput. Appl., vol. 49, no. 6, pp. 7–9, 2012.

R. Kumar and V. Moyal, “Visual Image Quality Assessment Technique using FSIM,” Int. J. Comput. Appl. Technol. Res., vol. 2, no. 3, pp. 250–254, May 2013, doi: 10.7753/IJCATR0203.1008.

D. B. Leksono, J. Raharjo, and I. Safitri, “Analisis Compressive Sampling Menggunakan Gabungan SWT-DST pada Steganografi Citra Digital Berbasis QIM,” e-Proceesing Eng., vol. 6, no. 1, pp. 249–255, 2019.

Article Metrics

Abstract view: 327 times
Download     : 103   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


  • There are currently no refbacks.