IMPLEMENTATION OF BACKPROPAGATION NEURAL NETWORK IN SENTIMENT ANALYSIS ON TWITTER TO PUBLIC FIGURES

Achmad Safruddin, Arief Hermawan, Adityo Permana Wibowo

Submitted : 2020-11-18, Published : 2020-11-27.

Abstract

Sentiment analysis is a process for identifying or analyzing people's opinions on a topic. Sentiment analysis analyzes each word in a sentence to find out the opinions or sentiments expressed in the sentence. The opinions expressed can be in the form of positive or negative opinions. Twitter is one of the most popular social media in Indonesia. Twitter users always discuss various kinds of topics every day. One of the things discussed on Twitter and which has become a trending topic several times is about public figures. This study discusses the analysis of positive or negative sentiments towards public figures based on tweet data carried out by text processing. The results of text processing are classified using a backpropagation neural network. Tests were carried out using 69 test data, resulting in an accuracy of 62.3%, with 43 correct classification results.

Keywords

Sentiment Analysis, Public Figures, Backpropagation, Classification

References

S. Kemp, “Digital 2020: Indonesia,” dateportal.com, 2020. [Online]. Available: https://datareportal.com/reports/digital-2020-indonesia. [Accessed: 18-Nov-2020].


Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 5(3), 279-285.

Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng-Seri Informatika, 3(1), 50-59.

Nugroho, A. (2018). Analisis Sentimen Pada Media Sosial Twitter Menggunakan Naive Bayes Classifier Dengan Ekstrasi Fitur N-Gram. J-SAKTI (Jurnal Sains Komputer dan Informatika), 2(2), 200-209.

Assuja, M. A., & Saniati, S. (2016). Analisis Sentimen Tweet Menggunakan Backpropagation Neural Network. Jurnal Teknoinfo, 10(2), 48-53.

Taufik, I., & Pamungkas, S. A. (2018). Analisis Sentimen Terhadap Tokoh Publik Menggunakan Algoritma Support Vector Machine (SVM). LOGIK@, 8(1), 69-79.

Wibisono, G., & Hermawan, A. (2019). FAKTOR-FAKTOR PENENTU GEJALA PENYAKIT KANKER PAYUDARA DENGAN PENDEKATAN JARINGAN SARAF TIRUAN. JASIEK (Jurnal Aplikasi Sains, Informasi, Elektronika dan Komputer), 1(1), 1-6.

Fachrie, M., & Wibowo, A. P. (2018). Jaringan syaraf tiruan untuk memprediksi kinerja satpam. JIKO (Jurnal Informatika dan Komputer), 3(1), 46-51.

Hidayati, N., Fachrie, M., & Wibowo, A. P. (2019). Estimation of Time Voting in Elections Using Artificial Neural Network. Compiler, 8(2), 131-138.

Waluyo, T., Hermawan, A., & Wibowo, A. P. (2019). PREDIKSI PENJUALAN SEPEDA MOTOR HONDA MENGGUNAKAN JARINGAN SYARAF TIRUAN. JOURNAL OF INFORMATION SYSTEM MANAGEMENT, 1(1), 31-35.

Andayani, S., & Ryansyah, A. (2017). Implementasi Algoritma TF-IDF Pada Pengukuran Kesamaan Dokumen. JuSiTik: Jurnal Sistem dan Teknologi Informasi Komunikasi, 1(1), 53-62.

Katyal, R. (2015). Back Propagation Neural Network based Emotion Recognition System. International Journal of Engineering Trends and Technology, 22(4), 148–152. doi:10.14445/22315381/ijett-v22p231

Rahayu, D., Wihandika, R. C., & Perdana, R. S. (2018). Implementasi Metode Backpropagation Untuk Klasifikasi Kenaikan Harga Minyak Kelapa Sawit. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Article Metrics

Abstract view: 543 times
Download     : 468   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.