Improving the Accuracy of Batik Classification using Deep Convolutional Auto Encoder

Muhammad Faqih Dzulqarnain, Abdul Fadlil, Imam Riadi

Submitted : 2024-11-03, Published : 2024-12-20.

Abstract

This research investigates the development of model deep convolutional autoencoders to enhance the classification of digital batik images. The dataset used was sourced from Kaggle. The autoencoder was employed to enrich the image data prior to convolutional processing. By forcing the autoencoder to learn a lower-dimensional latent representation that captures the most salient features of the batik patterns. The performance of this enhanced model was compared against a standard convolutional neural network (CNN) without the autoencoder. Experimental results demonstrate that the incorporation of the autoencoder significantly improved the classification accuracy, achieving 99% accuracy on the testing data and loss value of 3.4%. This study highlights the potential of deep convolutional autoencoders as a powerful tool for augmenting image data and improving the performance of deep learning models in the context of batik image classification.

Keywords

Autoencoder, DCAE, Accuracy, Batik Classification

References

A. Kusumastuti, Atika, T. A. Achmadi, K. Phusavat, and A. N. Hidayanto, “Assessment of producer’s perspective on the production of environmentally friendly fashion products: a case study in Indonesian natural dyes batik craftsmen,” Environmental Science and Pollution Research, vol. 30, no. 60, 2023, doi: 10.1007/s11356-022-23330-z.

Aquarini, Ishomuddin, V. Salviana DS, and F. M, “The Social Meaning of the Enggang Bird in Batik of Dayak Community of Central Kalimantan, Indonesia,” International Journal of Humanities, Social Sciences and Education, vol. 9, no. 5, 2022, doi: 10.20431/2349-0381.0905007.

R. Wiryadinata, M. R. Adli, R. Fahrizal, and R. Alfanz, “Klasifikasi 12 Motif Batik Banten Menggunakan Support Vector Machine,” Jurnal EECCIS, vol. 13, no. 1, 2019.

I. Maulana, H. Sastypratiwi, H. Muhardi, N. Safriadi, and H. Sujaini, “Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Motif Batik pada Aplikasi Computer Vision Berbasis Android,” JEPIN - Jurnal Edukasi dan Penelitian Informatika, vol. 9, no. 3, pp. 384–393, 2023.

D. G. T. Meranggi, N. Yudistira, and Y. A. Sari, “Batik Classification Using Convolutional Neural Network with Data Improvements,” International Journal on Informatics Visualization, vol. 6, no. 1, 2022, doi: 10.30630/joiv.6.1.716.

A. Tejawati, J. A. Widians, R. Sulle, Muhammad Bambang Firdaus, A. Prafanto, and F. Alameka, “Pemodelan Konsep Augmented Reality Motif Batik Dayak Kalimantan Timur,” METIK JURNAL, vol. 6, no. 1, 2022, doi: 10.47002/metik.v6i1.333.

E. Winarno, W. Hadikurniawati, A. Septiarini, and H. Hamdani, “Analysis of color features performance using support vector machine with multi-kernel for batik classification,” International Journal of Advances in Intelligent Informatics, vol. 8, no. 2, 2022, doi: 10.26555/ijain.v8i2.821.

R. F. Alya, M. Wibowo, and P. Paradise, “Classification of Batik Motif Using Transfer Learning on Convolutional Neural Network (CNN),” Jurnal Teknik Informatika (Jutif), vol. 4, no. 1, 2023, doi: 10.52436/1.jutif.2023.4.1.564.

K. Azmi, S. Defit, and Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28–40, 2023.

A. Prayoga, Maimunah, P. Sukmasetya, Muhammad Resa Arif Yudianto, and Rofi Abul Hasani, “Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta,” Journal of Applied Computer Science and Technology, vol. 4, no. 2, 2023, doi: 10.52158/jacost.v4i2.486.

N. W. Parwati Septiani et al., “Convolutional Neural Network (CNN) Algorithm for Geometrical Batik Sade’ Motifs,” in ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, 2023. doi: 10.1109/ICCoSITE57641.2023.10127829.

M. M. A. Wona et al., “Klasifikasi Batik Indonesia Menggunakan Convolutional Neural Network (CNN),” JURTI, vol. 7, no. 2, pp. 172–179, 2023, [Online]. Available: https://www.kaggle.com/datasets/dionisiusdh/indonesianbatik-motifs.

P. Bortnowski, H. Gondek, R. Król, D. Marasova, and M. Ozdoba, “Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder,” Energies (Basel), vol. 16, no. 4, 2023, doi: 10.3390/en16041666.

W. Kurniawan, Y. Kristian, and J. Santoso, “Pemanfaatan Deep Convolutional Auto-encoder untuk Mitigasi Serangan Adversarial Attack pada Citra Digital,” J-INTECH(Journal ofInformation and Technology), vol. 11, no. 1, pp. 50–59, 2023.

H. M. Tornyeviadzi and R. Seidu, “Leakage detection in water distribution networks via 1D CNN deep autoencoder for multivariate SCADA data,” Eng Appl Artif Intell, vol. 122, 2023, doi: 10.1016/j.engappai.2023.106062.

K. N. Sunil Kumar, G. B. Arjun Kumar, R. Gatti, S. Santosh Kumar, D. A. Bhyratae, and S. Palle, “Design and implementation of auto encoder based bio medical signal transmission to optimize power using convolution neural network,” Neuroscience Informatics, vol. 3, no. 1, p. 100121, Mar. 2023, doi: 10.1016/j.neuri.2023.100121.

F. Deng, W. Luo, B. Wei, Y. Zuo, H. Zeng, and Y. He, “A novel insulator defect detection scheme based on Deep Convolutional Auto-Encoder for small negative samples,” High Voltage, vol. 7, no. 5, 2022, doi: 10.1049/hve2.12210.

R. Zhao, Z. Yang, X. Meng, and F. Shao, “A Novel Fully Convolutional Auto-Encoder Based on Dual Clustering and Latent Feature Adversarial Consistency for Hyperspectral Anomaly Detection,” Remote Sens (Basel), vol. 16, no. 4, 2024, doi: 10.3390/rs16040717.

Z. Qiang, L. He, F. Dai, Q. Zhang, and J. Li, “Image inpainting based on improved deep convolutional auto-encoder network,” Chinese Journal of Electronics, vol. 29, no. 6, 2020, doi: 10.1049/cje.2020.09.008.

V. Turchenko, E. Chalmers, and A. Luczak, “A deep convolutional auto-encoder with pooling - unpooling layers in caffe,” International Journal of Computing, vol. 18, no. 1, 2019, doi: 10.47839/ijc.18.1.1270.

H. E. Atlason, A. Love, S. Sigurdsson, V. Gudnason, and L. M. Ellingsen, “SegAE: Unsupervised white matter lesion segmentation from brain MRIs using a CNN autoencoder,” Neuroimage Clin, vol. 24, 2019, doi: 10.1016/j.nicl.2019.102085.

O. B. Ozdemir and A. Koz, “3D-CNN and Autoencoder-Based Gas Detection in Hyperspectral Images,” IEEE J Sel Top Appl Earth Obs Remote Sens, vol. 16, 2023, doi: 10.1109/JSTARS.2023.3235781.

X. Song et al., “A Semantic Segmentation Method for Road Environment Images Based on Hybrid Convolutional Auto-Encoder,” Traitement du Signal, vol. 39, no. 4, 2022, doi: 10.18280/ts.390416.

Y. Farooq and S. Savas, “Noise Removal from the Image Using Convolutional Neural Networks-Based Denoising Auto Encoder,” Journal of Emerging Computer Technologies, vol. 3, no. 1, 2024, doi: 10.57020/ject.1390428.

J. Li, J. Wang, and Z. Lin, “SGCAST: symmetric graph convolutional auto-encoder for scalable and accurate study of spatial transcriptomics,” Brief Bioinform, vol. 25, no. 1, 2024, doi: 10.1093/bib/bbad490.

D. Yang, H. R. Karimi, and K. Sun, “Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples,” Neural Networks, vol. 141, pp. 133–144, 2021, doi: https://doi.org/10.1016/j.neunet.2021.04.003.

A. W. Murdiyanto and M. Habibi, “Analysis of Deep Learning Approach Based on Convolution Neural Network (CNN) for Classification of Web Page Title and Description Text,” Compiler, vol. 11, no. 2, pp. 51–58, 2022.

Article Metrics

Abstract view: 54 times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.