Classification and Evaluation of Sleep Disorders Using Random Forest Algorithm in Health and Lifestyle Dataset

Wiwiek Widyastuty, Mochammad Abdul Azis

Submitted : 2024-04-11, Published : 2024-05-31.

Abstract

Sleep is a fundamental aspect of human life, accounting for approximately one-third of our existence and playing a crucial role in the restoration of physical health and overall quality of life. However, poor sleep quality can interfere with these critical restorative processes, leading to disorders such as apnoea and insomnia. These conditions not only impair daily performance but also have long-term health consequences. Furthermore, the challenges imposed by modern lifestyles have increased the prevalence of these sleep disorders, emphasizing the need for effective diagnostic tools. This research aims to harness the capabilities of Machine Learning (ML), specifically the Random Forest algorithm, to detect and analyse patterns indicative of sleep disorders in collected data sets. Random Forest is particularly suited for this task due to its ability to manage complex data sets by building multiple decision trees, thus creating a comprehensive and robust model for classifying sleep disorders. The findings of the study are promising, showing that the Random Forest algorithm can achieve a high level of accuracy in sleep disorder detection. The model demonstrated a test accuracy rate of 97.33%, with a precision of 96%, and a recall rate of 100%. Additionally, it achieved an F1-Score of 98% and a Kappa Score of 0.945, validating the reliability of this algorithm in producing precise classifications. This research offers significant insights into the patterns of sleep disorders and contributes to the development of targeted interventions aimed at improving sleep quality. Ultimately, this could significantly enhance the quality of life for individuals suffering from sleep disorders.

Keywords

Sleep Disorders, Insomnia, Machine Learning, Data Classification

References

M. Zokaeinikoo, “Automatic sleep stages classification,” 2016.

Y. Maali and A. Al-Jumaily, “A novel partially connected cooperative parallel PSO-SVM algorithm: Study based on sleep apnea detection,” in 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1–8.

Y. J. Kim, J. S. Jeon, S.-E. Cho, K. G. Kim, and S.-G. Kang, “Prediction models for obstructive sleep apnea in Korean adults using machine learning techniques,” Diagnostics, vol. 11, no. 4, p. 612, 2021.

A. Fauzi, R. Supriyadi, and N. Maulidah, “Deteksi Penyakit Kanker Payudara dengan Seleksi Fitur berbasis Principal Component Analysis dan Random Forest,” J. Infortech, vol. 2, no. 1, pp. 96–101, 2020.

F. Thabtah, “Autism spectrum disorder screening: machine learning adaptation and DSM-5 fulfillment,” in Proceedings of the 1st International Conference on Medical and health Informatics 2017, 2017, pp. 1–6.

M. Mambang and A. Byna, “Analisis perbandingan algoritma c. 45, random forest dengan chaid decision tree untuk klasifikasi tingkat kecemasan ibu hamil,” Semnasteknomedia Online, vol. 5, no. 1, pp. 1–2, 2017.

L. Fadilah, “Klasifikasi Random Forest pada data imbalanced,” Fakultas Sains dan Teknologi UIN Syarif Hidayatullah Jakarta, 2018.

N. K. Dewi, U. D. Syafitri, and S. Y. Mulyadi, “Penerapan Metode Random Forest Dalam Driver Analysis,” in Forum Statistika dan Komputasi, 2011.

M. L. Suliztia and others, “Penerapan Analisis Random Forest pada Prototype Sistem Prediksi Harga Kamera Bekas Menggunakan Flask,” 2020.

A. H. Primandari and others, “Implementasi Artificial Inteligence untuk Memprediksi Harga Penjualan Rumah Menggunakan Metode Random Forest dan Flask (Studi kasus: Rohini, India),” 2020.

R. A. Haristu and P. H. P. Rosa, “Penerapan metode Random Forest untuk prediksi win ratio pemain player Unknown Battleground,” Media Inf. Anal. Dan Sist., no. 2, pp. 120–128, 2019.

M. Adipa, A. T. Zy, and M. M. Effendi, “KLASIFIKASI EMAIL PHISHING MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” J. RESTIKOM Ris. Tek. Inform. dan Komput., vol. 5, no. 2, pp. 148–157, 2023.

I. Nurjanah, J. Karaman, I. Widaningrum, D. Mustikasari, and S. Sucipto, “Penggunaan Algoritma Naive Bayes Untuk Menentukan Pemberian Kredit Pada Koperasi Desa,” Explorer (Hayward)., vol. 3, no. 2, pp. 77–87, 2023.

D. Apriliani, A. Susanto, M. F. Hidayattullah, and G. W. Sasmito, “Sentimen Analisis Pandangan Masyarakat Terhadap Vaksinasi Covid 19 Menggunakan K-Nearest Neighbors,” J. Inform. J. Pengemb. IT, vol. 8, no. 1, pp. 34–37, 2023.

D. Safitri, S. S. Hilabi, and F. Nurapriani, “Analisis Penggunaan Algoritma Klasifikasi Dalam Prediksi Kelulusan Menggunakan Orange Data Mining,” RABIT J. Teknol. dan Sist. Inf. Univrab, vol. 8, no. 1, pp. 75–81, 2023.

Article Metrics

Abstract view: 258 times
Download     : 112   times Download     : 31   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.