Recommendation System for Clustering to Allocate Classes for New Students Using The K-Means Method

Yuri Ariyanto, Wilda Imama Sabilla, Zidan Shabira As Sidiq

Submitted : 2023-11-23, Published : 2024-05-26.

Abstract

SMAN 1 Durenan has a plan to organize the allocation of classes for new students using a system to achieve practical and efficient student grouping. The reason for implementing this class allocation system is SMAN 1 Durenan aims to create a new system to process student data for class allocation according to specific needs. This research involves the development of a Recommendation System for Clustering to Allocate Classes for New Students using the K-Means method. The system processes data of newly enrolled students at SMAN 1 Durenan based on specific attributes. The results of this student data processing serve as considerations and references for SMAN 1 Durenan to perform class allocation as needed. The analysis in this research utilizes the K-Means method to obtain data clusters that maximize the similarity of characteristics within each group and maximize the differences between the collections created. The developed recommendation system website provides information about the student data clustering results from the K-Means process at SMAN 1 Durenan.

Keywords

Recommendation System; Clustering System; K-Means; New Student Class Division

References

M. Cendani, D. Ardian Pramana, and E. Sudrajat, “Sistem Informasi Kearsipan Menggunakan Framework Laravel (Studi Kasus: Prodi Sistem Informasi Universitas Peradaban),” J. Sist. Inf. dan Teknol. Perad., vol. 4, no. 1, 2023, [Online]. Available: www.journal.peradaban.ac.id.

M. S. Fauzi and S. Samsudin, “Smart School Berbasis Web Interaktif di SD Swasta Amaliyah Sunggal dengan Algoritma K-Means Cluster,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 332–341, 2022, doi: 10.32736/sisfokom.v11i3.1479.

M. A. Saputra and Soedjarwo, “Implementasi sistem informasi manajemen berbasis aplikasi mobile pada jenjang sma,” J. Inspirasi Manaj. Pendidik., vol. Vol. 09, no. No. 02, pp. 361–376, 2021.

F. Nasari and C. J. M. Sianturi, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan Penyebaran Diare Di Kabupaten Langkat,” CogITo Smart J., vol. 2, no. 2, pp. 108–119, 2016, doi: 10.31154/cogito.v2i2.19.108-119.

E. D. Sikumbang, “Penerapan Data Mining Dengan Algoritma Apriori,” J. Tek. Komput. AMIK BSI, vol. 9986, no. September, pp. 1–4, 2018.

M. D. Alkhussayid and F. Ferdiansyah, “Implementasi Algoritma K-Nearest Neighbors Pada Penentuan Jurusan Siswa,” J. Sist. Komput. dan Inform., vol. 4, no. 1, p. 25, 2022, doi: 10.30865/json.v4i1.4759.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

G. Gustientiedina, M. H. Adiya, and Y. Desnelita, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan,” J. Nas. Teknol. dan Sist. Inf., vol. 5, no. 1, pp. 17–24, 2019, doi: 10.25077/teknosi.v5i1.2019.17-24.

H. Haviluddin, S. J. Patandianan, G. M. Putra, N. Puspitasari, and H. S. Pakpahan, “Implementasi Metode K-Means Untuk Pengelompokkan Rekomendasi Tugas Akhir,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 16, no. 1, p. 13, 2021, doi: 10.30872/jim.v16i1.5182.

R. Djutalov, “Analisis Suksesi Sdm Menggunakan Algoritma Klasifikasi K -Nearest Neighbour Dan Algoritma Clustering K -Means ( Studi Kasus : Mabes Polri ),” 2016.

S. Sukamto, I. D. Id, and T. R. Angraini, “Penentuan Daerah Rawan Titik Api di Provinsi Riau Menggunakan Clustering Algoritma K-Means,” JUITA J. Inform., vol. 6, no. 2, p. 137, 2018, doi: 10.30595/juita.v6i2.3172.

M. Syahril, S. Kusnasari, A. Muhazir, and A. Syahputri, “Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD Implementasi Data Mining Untuk Rekomendasi Jurusan Menggunakan Algoritma K-Means Clustering Jurnal Teknologi Sistem Informasi dan Sistem Komputer TGD,” Teknol. Sist. Inf. dan Sist. Komput. TGD, vol. 6, pp. 235–245, 2023.

R. F. Saputra, Y. Agus Pranoto, and R. Primaswara P., “Implementasi Metode K-Means Clustering Pada Tes Psikologi Untuk Menentukan Kelompok Belajar Siswa Berbasis Mobile,” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 1, pp. 328–333, 2021, doi: 10.36040/jati.v5i1.3290.

T. S. Jaya, “Pengujian Aplikasi dengan Metode Blackbox Testing Boundary Value Analysis (Studi Kasus: Kantor Digital Politeknik Negeri Lampung),” J. Inform. J. Pengemb. IT, vol. 3, no. 1, pp. 45–48, 2018, doi: 10.30591/jpit.v3i1.647.

E. Muningsih and S. Kiswati, “Sistem Aplikasi Berbasis Optimasi Metode Elbow Untuk Penentuan Clustering Pelanggan,” Joutica, vol. 3, no. 1, p. 117, 2018, doi: 10.30736/jti.v3i1.196.

A. W. Fuadah, F. N. Arifin, and O. Juwita, “Optimasi K-Klasterisasi Ketahanan Pangan Kabupaten Jember Menggunakan Metode Elbow,” INFORMAL Informatics J., vol. 6, no. 3, p. 136, 2021, doi: 10.19184/isj.v6i3.28363.

I. Wahyudi, M. B. Sulthan, and L. Suhartini, “Analisa Penentuan Cluster Terbaik Pada Metode K-Means Menggunakan Elbow Terhadap Sentra Industri Produksi Di Pamekasan,” J. Apl. Teknol. Inf. dan Manaj., vol. 2, no. 2, pp. 72–81, 2021, doi: 10.31102/jatim.v2i2.1274.

Article Metrics

Abstract view: 148 times
Download     : 50   times Download     : 21   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.