Pendinginan panel surya menggunakan kotak pendingin dan sirip pendingin
Submitted : 2021-04-28, Published : 2021-05-28.
Abstract
An alternative energy source that can be utilized in Indonesia is solar energy, this energy is obtained from the intensity of solar radiation and then, is converted into electrical energy with solar panels technology. The performance of the solar panel is strongly influenced by the surface temperature of the panel because the semiconductor material in the panel is sensitive to temperature changes. However, the cooling process in solar panels to maintain temperature panels is important. This study combines the use of a cooling box and fins by considering fins with a very limited area. Experiments were carried out to observe natural and forced convection with or without fins in a cooling box. The results obtained that the natural convection cooling process of the panels using the cooling box and fins (without airflow) can reduce the temperature of the solar panels by 3.52%, on the other hand, by using forced convection process (with airflow), the cooling box and fins can reduce the temperature of solar panels by 3.78%. The effectiveness of fins in the case without airflow is 24.63%, but then the case of airflow cooling of solar panels is 16.63%. The addition of fins on natural convection cooling (without airflow) of solar panels causes the heat transfer area to increase, thereby increasing the rate of heat transfer between the solar panels and the air.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
M. Arifin, D. O. Margareta, and O. F. Trimaryana, “Pengaruh Intensitas Cahaya terhadap Efisiensi Konversi Sel Surya Berbasis Dye-Sensitized Solar Cell (DSSC),” J. Integr., vol. 9, no. 1, p. 24, 2017.
S. Kalogirou, “The potential of solar industrial process heat applications,” Appl. Energy, vol. 76, no. 4, pp. 337–361, 2003.
S. Mahdy, M. Reza, and C. Ekaputri, “Mempengaruhi Kinerja Photovoltaic Jenis Polycristalline Berukuran 6Cm X 11Cm X 0 . 25Cm Analyze of Characteristic and External Factors Which Influencing of Polycristalline Photovoltaic Works With the Size 6Cm X 11Cm X 0 . 25Cm,” vol. 5, no. 3, pp. 3816–3822, 2018.
T. A. Rizal, M. Amin, and P. H. Saputra, “Kaji Eksperimental Pendinginan Panel Surya Menggunakan Media Udara,” Jurutera, vol. 01, no. 01, pp. 027–030, 2014.
G. R. Cahyono, P. R. Ansyah, and M. Munthaha, “Pengaruh Variasi Kecepatan Hembusan Udara Terhadap Temperatur , Daya Output dan Efisiensi Pada Pendinginan Panel Surya,” Infotekmesin, vol. 11, no. 02, pp. 141–146, 2020.
A. M. A. Soliman, H. Hassan, and S. Ookawara, “An experimental study of the performance of the solar cell with heat sink cooling system,” Energy Procedia, vol. 162, pp. 127–135, 2019.
P. Handoko and Y. Fajariyanti, “Pengaruh Spektrum Cahaya Tampak Terhadap Laju Fotosintesis Tanaman Air Hydrilla Verticillata,” Semin. Nas. X Pendidik. Biol. FKIP UNS, pp. 1–9, 2010.
I. Yusuf, “Implementasi Water Cooling System Untuk Menurunkan Temperature Losses Pada Panel Surya,” J. Tek. Elektro Univ. Tanjungpura, vol. 1, no. 2, pp. 3–5, 2017.
C. P. Kothandaraman, Fundamentals of Heat and Mass Transfer, Third. New Delhi: New Age International Publisher, 2006.
Y. A. C. & Y. Cengel, Heat Transfer: A Practical Approach With EES CD. 2002.
A. M. Dee, Pengaruh Koefisien Perpindahankalor Konveksi Dan Bahan Terhadap Laju Aliran Kalor, Efektivitas Dan Efisiensi Sirip Dua Dimensi Keadaan Tak Tunak. Yogyakarta: Universitas Sanata Dharma, 2016.
S. Sudirman, “Kajian Intensitas Cahaya (Adin Sudirman),” Bul. Pengelolaan Reakt. Nukl., pp. 1–9, 2007.
Article Metrics
Abstract view: 714 timesDownload  : 559 times
This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.