RANKING AND GROUPING FOR SCHOLARSHIP RECIPIENTS OF THE NAVY INFORMATION TECHNOLOGY PROFESSION

Galih Aris Harmawan, Raden Supriyanto

Submitted : 2020-01-24, Published : 2020-03-05.

Abstract

The process of selecting scholarship recipients is a process that must be carried out in the context of providing educational scholarships. For the Navy, education is a very important thing in an effort to increase capability and professionalism in running an organization. The provision of educational scholarships for Navy personnel, especially in the environment of professional informatics, is carried out through selection of candidates' criteria that have been registered. Scholarship recipient data is processed to find the order of the candidates who will be determined as scholarship recipients. Prospective recipient data is considered by looking at certain criteria. Each criterion has a different weight. Based on the weights of each criterion, we can get weights that can be sorted according to certain priorities. For decision makers, many factors influence in determining a decision, so by using the Analytical Hierarchy Process (AHP) method and the Fuzzy C-Means (FCM) method a sequence and grouping of prospective scholarship recipients can be generated from each method. Based on the calculation results, in the AHP data that was entered as many as 747 candidate data, in the initial selection process obtained as many as 107 candidate data whose profession is informatics. All candidate data can be sorted based on the calculation of the assessment of eight criteria and ranking, from rank 1 to ranking 107. For processing time, the AHP method requires a longer time, which is ± 3 minutes, weighting process ± 1 minute, and ranking process ± 1 minute. Whereas in the FCM method, with the same amount of data it takes around ± 5 minutes until the iteration is complete or until the difference in objective function is smaller than epsilon. For the grouping results, this FCM method found that 43 candidates (40.19%) were strongly recommended, 31 candidates (28.97%) were recommended, and 33 candidates (30.84%) were not advised to receive scholarships with cluster validation in this study was 0.604. Hope in the future can simplify the calculation process for ranking and grouping selection, because it is already a computer application that is easy to use, and is expected to accelerate the selection process.

Keywords

analytical hierarchy process (AHP), fuzzy c-means (FCM), Navy scholarships

References

Murniati, M., Usman, N., Husen, M., & Irani, U. (2018). Penerapan sistem standar mutu ISO 9001 2008 pada sekolah menengah kejuruan. Jurnal Akuntabilitas Manajemen Pendidikan, 6(1), 1-10.

Putra, I. N., & Pramono, S. H. (2017). KONSEPSI PEMBANGUNAN KEKUATAN DAN KEMAMPUAN SISTEM INFORMASI OPERASI TNI AL DALAM MENDUKUNG PENYELENGGARAAN STRATEGI PERTAHANAN LAUT NUSANTARA. INTERNATIONAL JOURNAL OF ASRO-STTAL, 7, 1-48.

Harahap, H. E., Bukhari, F., & Silalahi, B. P. (2018). Algorithm Decision Support in Determining Bidikmisi Scholarship Receive (Case Study: Bidikmisi Scholarship). Int. J. Eng. Manag. Res, 8(1), 217-222.

Andriani, R., Amanullah, R. F., & Ninosari, D. (2018, December). Optimization Of Clustering Algorithm On Decision Support System Of Scholarship Recipients Using Analytical Hierarchy Process Method. In Journal of Physics: Conference Series (Vol. 1140, No. 1, p. 012028). IOP Publishing.

Sutoyo, M. N., & Sumpala, A. T. (2015). Penerapan Fuzzy C-Means untuk Deteksi Dini Kemampuan Penalaran Matematis. Scientific Journal of Informatics, 2(2), 129-135.

Iskarim, M. (2017). Rekrutmen Pegawai: Starting-Point menuju Kinerja Organisasi yang Berkualitas dalam Perspektif Manajemen Sumber Daya Manusia dan Islam. Manageria: Jurnal Manajemen Pendidikan Islam, 2(2), 307-327.

Frieyadie, F. (2017). Penerapan Metode AHP Sebagai Pendukung Keputusan Penetapan Beasiswa. Jurnal Pilar Nusa Mandiri, 13(1), 49-58.

Welinda, R., Sarita, M. I., & Dewi, A. P. (2016). IMPLEMENTASI METODE FUZZY C-MEANS PADA SISTEM PENDUKUNG KEPUTUSAN PENENTUAN MUSTAHIK DI BAZNAS KENDARI. semanTIK, 2(1).

Amirah, M. M. A., Widodo, A. W., & Dewi, C. (2017). Pengelompokan Lagu Berdasarkan Emosi Menggunakan Algoritma Fuzzy C-Means. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Indrianingsih, Y., & Naibaho, W. S. (2015). Sistem Pendukung Keputusan Penentuan Jenis Tanaman Pangan Berdasarkan Kandungan Tanah Menggunakan Metode Analytical Hierarchy Process (AHP) dengan Algoritma Genetika. Compiler, 4(2).

Murdiyanto, A. W. (2019). Decision Support System of Keyword Selection Web Site Using Analytical Hierarchy Process (AHP) and Simple Additive Weighting (SAW). Compiler, 8(1), 81-93.

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203.

Akbar, M., Witanti, A., & Susilawati, I. (2019). GPU Accelerated Fuzzy C-Means (FCM) Color Image Segmentation. Compiler, 8(2), 165-174.

Bere, G. A., Tamtjita, E. N., & Kusumaningrum, A. (2016, November). Klasifikasi Untuk Menentukan Tingkat Kematangan Buah Pisang Sunpride. In Conference SENATIK STT Adisutjipto Yogyakarta (Vol. 2, pp. 109-113).

Li, J., Gao, X. B., & Jiao, L. C. (2007). New Cluster Validity Function Based on the Modifed Partition Fuzzy Degree. J. System Engineering and Electronics, 24, 723-726.

Nurdiyanto, H., & Meilia, H. (2016). Sistem Pendukung Keputusan Penentuan Prioritas Pengembangan Industri Kecil Dan Menengah di Lampung Tengah Menggunakan Analitical Hierarchy Process (AHP). SEMNASTEKNOMEDIA ONLINE, 4(1), 3-3.

Sanyoto, G. P., Handayani, R. I., & Widanengsih, E. (2017). Sistem Pendukung Keputusan Pemilihan Laptop Untuk Kebutuhan Operasional Dengan Metode AHP (Studi Kasus: Direktorat Pembinaan Kursus Dan Pelatihan Kemdikbud). Jurnal Pilar Nusa Mandiri, 13(2), 167-174.

Article Metrics

Abstract view: 513 times
Download     : 221   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.