An End-to-End Machine Learning Pipeline for Online Purchase Intention Prediction Using Random Forest and MLOps Practices
Submitted : 2026-01-20, Published : 2026-02-20.
Abstract
Keywords
Full Text:
Artikel - PDF (Bahasa Indonesia)References
M. A. Musababa and M. Fachrie, “Data Streaming Pipeline Model Using DBSTREAM-Based Online Machine Learning for E-Commerce User Segmentation,” Journal of Applied Informatics and Computing, vol. 9, no. 6, pp. 3346–3355, Dec. 2025, doi: 10.30871/jaic.v9i6.11522.
S. Zhang, T. Mo, and Z. Zhang, “LightPersML: A Lightweight Machine Learning Pipeline Architecture for Real-Time Personalization in Resource-Constrained E-commerce Businesses,” Journal of Advanced Computing Systems, vol. 4, no. 8, pp. 44–56, 2024, doi: 10.69987/JACS.2024.40807.
Y. E. Gundogmus, S. Acikalin, and A. Rastak, “Customer Lifetime Value Prediction in E-Commerce: Machine Learning Approaches and Business Implications,” in Proc. Int. Symp. Innovations in Intelligent SysTems and Applications (INISTA), 2025.
O. R. S. G. Alamuri and C. K. Bondalapu, “Predicting E-Commerce Purchase Intention Using Machine Learning,” ASEAN J. Sci. Tech. Report., vol. 29, no. 1, e260159, 2026, doi: 10.55164/ajstr.v29i1.260159.
X. Ma and X. Jiang, “Predicting Cross-border E-commerce Purchase Behavior in Organic Products: A Machine Learning Approach Integrating Cultural Dimensions and Digital Footprints,” International Journal of Computer and Information System, vol. 5, no. 1, pp. 91–102, 2024, doi: 10.29040/ijcis.v5i1.212.
T. Nikhitha, S. S. Sameer, and D. Bhattacharya, “Online Shopping Purchase Intention Prediction Using Machine Learning,” in Proc. Int. Conf. Communication, Computer, and Information Technology (IC3IT), 2025.
A.-A. Tanvir, I. A. Khandokar, A. K. M. M. Islam, S. Islam, and S. Shatabda, “A Gradient Boosting Classifier for Purchase Intention Prediction of Online Shoppers,” Heliyon, vol. 9, no. 4, e15163, 2023, doi: 10.1016/j.heliyon.2023.e15163.
T. T. Nguyen, H. T. T. Truong, and T. Le-Anh, “Online Purchase Intention Under the Integration of Theory of Planned Behavior and Technology Acceptance Model,” SAGE Open, vol. 13, no. 4, art. 21582440231218814, 2023, doi: 10.1177/21582440231218814.
F. V. Ferdinand, L. Laurence, and K. N. Effendi, “Comparing Random Forest and XGBoost Machine Learning Models for Predicting Purchase Intention in Online Consumer Behavior: A Study in the Jabodetabek Area,” in Program & Abstract Book of CIC 2025 (CONMEDIA 2025), Malacca, Malaysia, Oct. 14–17, 2025, p. 94.
A. K. Prasad, D. K. M, V. D. J. Macedo, B. R. Mohan, and A. P. N, “Machine Learning Approach for Prediction of the Online User Intention for a Product Purchase,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 1s, pp. 43–51, 2023, doi: 10.17762/ijritcc.v11i1s.5992.
J. Adhikari, “Online Shoppers’ Purchase Intention using Ensemble Learning Approach,” International Journal of Next-Generation Computing, vol. 14, no. 4, Nov. 2023, doi: 10.47164/ijngc.v14i4.1065.
C. Clarence and K. Keni, “The Prediction of Purchase Intention Based on Digital Marketing, Customer Engagement, and Brand Preference,” in Proc. 10th Int. Conf. Entrepreneurship and Business Management (ICEBM 2021), Adv. Econ., Bus. Manag. Res., Atlantis Press, 2022, pp. 481–486, doi: 10.2991/aebmr.k.220501.073.
R. Kale, K. Bidwai, M. Maske, R. Bansode, and P. Gurav, “Prediction of Customer Purchase Intention using Social Media Data,” Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT), vol. 2, no. 5, pp. 10–13, May 2022, doi: 10.48175/IJARSCT-4003.
Y. Tong, “The Influence of Online Celebrity Live Streaming on Consumers’ Purchasing Decisions,” Highlights in Business, Economics and Management, vol. 8, pp. 411–418, 2023, doi: 10.54097/hbem.v8i.7239.
S. Sikka and J. Kumar, “Understanding Indian Millennials’ Awareness Towards Brand Personality of Apparel Brands,” Small Enterprises Development, Management & Extension Journal, vol. 51, no. 1, pp. 41–53, 2024, doi: 10.1177/09708464231209451.
H. A. Salman, A. Kalakech, and A. Steiti, “Random Forest Algorithm Overview,” Babylonian Journal of Machine Learning, vol. 2024, pp. 69–79, 2024, doi: 10.58496/BJML/2024/007.
Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. Liang, “An improved random forest based on the classification accuracy and correlation measurement of decision trees,” Expert Systems with Applications, vol. 237, pt. B, art. 121549, 2024, doi: 10.1016/j.eswa.2023.121549.
S. F. Neduet, A. H. Neduet, S. B. Amir, M. G. Z. Awan, S. H. Ahmed, and S. M. H. Aslam, “XGBoost and Random Forest Algorithms: An in Depth Analysis,” Pakistan Journal of Scientific Research, vol. 3, no. 1, pp. 26–31, 2023, doi: 10.57041/vol3iss1pp26-31.
H. Hairani, A. Anggrawan, and D. Priyanto, “Improvement Performance of the Random Forest Method on Unbalanced Diabetes Data Classification Using Smote-Tomek Link,” Int. J. Informatics Visualization, vol. 7, no. 1, pp. 258–264, 2023, doi: 10.30630/joiv.7.1.1069.
W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, “Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization,” Geoscience Frontiers, vol. 12, no. 1, pp. 469–477, 2021, doi: 10.1016/j.gsf.2020.03.007.
D. Kreuzberger, N. Kuhl, and S. Hirschl, “Machine Learning Operations (MLOps): Overview, Definition, and Architecture,” IEEE Access, vol. 11, pp. 31866–31879, 2023, doi: 10.1109/ACCESS.2023.3262138.
S. Pahune and Z. Akhtar, “Transitioning from MLOps to LLMOps: Navigating the Unique Challenges of Large Language Models,” Information, vol. 16, no. 2, art. 87, 2025, doi: 10.3390/info16020087.
A. Sanchez-Mompo, I. Mavromatis, P. Li, K. Katsaros, and A. Khan, “Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations,” Information, vol. 16, no. 4, art. 281, 2025, doi: 10.3390/info16040281.
A. C. Cob-Parro, Y. Lalangui, and R. Lazcano, “Fostering Agricultural Transformation through AI: An Open-Source AI Architecture Exploiting the MLOps Paradigm,” Agronomy, vol. 14, no. 2, art. 259, 2024, doi: 10.3390/agronomy14020259.
P. Liang, B. Song, X. Zhan, Z. Chen, and J. Yuan, “Automating the training and deployment of models in MLOps by integrating systems with machine learning,” Applied and Computational Engineering, vol. 76, pp. 1–7, 2024, doi: 10.54254/2755-2721/76/20240690.
Article Metrics
Abstract view: 65 times
Download  : 4 times

This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.





