Model Analisis Sentimen pada Ulasan Pengguna Mobile Banking Menggunakan Kombinasi K-Means dan Naive Bayes
Submitted : 2024-08-16, Published : 2025-05-20.
Abstract
Application Mobile Banking Sumsel Babel (BSB) faces the problem of low user satisfaction with a System Usability Scale (SUS) score of 31.46, which is included in the "Not Acceptable" category. The main purpose of this study is so that South Sumatra Babel can make improvements to the BSB application. The methods used include K-Means for clustering review data and Naïve Bayes for classifying user review sentiment. The study found four clusters of user reviews, of which sentiment in cluster 0 and cluster 3 were classified as negative, while cluster 1 and cluster 2 were classified as positive. Negative clusters indicate problems in access, account activation, failed transactions, and frequent application errors. In conclusion, users of the BSB application experienced various difficulties and frustrations related to the stability and reliability of the application, indicating an urgent need for improvement, especially in cluster 0 and cluster 3
Keywords
References
E. Khoiroh, Farida; Latifah, “Fintech ( Financial Technology ) Dalam Sistem Pembayaran Non Tunai Di Perbankan Syariah ( Studi Kasus Pada Bank Muamalat KCP Lamongan ),” Public Serv. Gov. J., vol. 4, 2023.
D. Anggraeni, “Pengaruh Kualitas Sistem Informasi Akuntansi Terhadap Kepuasan Pengguna Aplikasi Berbasis Mobile Banking Pada Bank BCA KCP Banda,” Rev. Account. Bus., vol. 3, no. 2, pp. 170–181, 2023, doi: 10.52250/reas.v3i2.600.
V. Andriyati, S., Hidayah, N., & Rismayani, “Pengaruh Kualitas Pelayanan, Kemudahan Transaksi dan Fitur Produk Terhadap Kepuasan Nasabah Dalam Penggunaan Bsi Mobile Banking,” J. Ekon. Syariah, vol. 4, pp. 139–159, 2022.
D. P. Utami, “Aplikasi Mobile Banking Dalam Transaksi Pada PT . Bank Sumsel Babel Cabang Pembantu Tulung Selapan,” J. Ilm. Mhs. Perbank. Syariah, vol. 2, pp. 183–196, 2022.
A. Aditya, I. Jovian, and B. N. Sari, “Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018 / 2019,” J. Media Inform. Budidarma, vol. 4, pp. 51–58, 2020, doi: 10.30865/mib.v4i1.1784.
Aziz Saputra, “Analisis Pengguna Aplikasi Mobile Banking Sumsel Babel Menggunakan Metode System Usability Scale,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 3115–3126, 2023, doi: 10.33022/ijcs.v12i5.3455.
I. T. Julianto, “Analisis Sentimen Terhadap Sistem Informasi Akademik Mahasiswa Institut Teknologi Garut,” J. Algoritm., vol. 19, pp. 458–465, 2022.
N. Amalia, N. I. Royanti, and B. Ismanto, “Analisa Sentimen Pelanggan pada Review Belanja Online Berbasis Text Mining Menggunakan Metode K-Means,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1441–1447, 2023, doi: 10.47065/josh.v4i4.3781.
T. A. P. Pradani Ayu Widya Purnama, “Klasifikasi Penjualan Produk Menggunakan Algoritma Naive Bayes pada Konter HP Bayu Cell,” J. Manaj. Inform. Komput., vol. 8, pp. 286–292, 2024.
A. Agung, A. Daniswara, I. Kadek, and D. Nuryana, “Data Preprocessing Pola Pada Penilaian Mahasiswa Program Profesi Guru,” J. Informatics Comput. Sci., vol. 05, pp. 97–100, 2023.
R. Rina, T. Hidayat, and D. Uki Eka Saputri, “Analisis Percepatan Pemulihan Ekonomi Indonesia Pasca Pandemi Dengan Big Data Dan Deep Learning,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3244–3252, 2024, doi: 10.36040/jati.v8i3.9420.
K. Pratama Simanjuntak and U. Khaira, “Hotspot Clustering in Jambi Province Using Agglomerative Hierarchical Clustering Algorithm,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 7–16, 2021.
P. W. Cahyo, U. S. Aesyi, and B. D. Santosa, “Topic Sentiment Using Logistic Regression and Latent Dirichlet Allocation as a Customer Satisfaction Analysis Model,” J. Infotel, vol. 16, no. 1, pp. 1–16, 2024, doi: 10.20895/infotel.v16i1.1081.
R. A. Husen, R. Astuti, L. Marlia, R. Rahmaddeni, and L. Efrizoni, “Analisis Sentimen Opini Publik pada Twitter Terhadap Bank BSI Menggunakan Algoritma Machine Learning,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 211–218, 2023, doi: 10.57152/malcom.v3i2.901.
V. A. Ekasetya and A. Jananto, “Klusterisasi Optimal Dengan Elbow Method Untuk Pengelompokan Data Kecelakaan Lalu Lintas Di Kota Semarang,” J. Din. Inform., vol. 12, no. 1, pp. 20–28, 2020, doi: 10.35315/informatika.v12i1.8159.
S. M. Fani, R. Santoso, and S. Suparti, “Penerapan Text Mining Untuk Melakukan Clustering Data Tweet Akun Blibli Pada Media Sosial Twitter Menggunakan K-Means Clustering,” J. Gaussian, vol. 10, no. 4, pp. 583–593, 2021, doi: 10.14710/j.gauss.v10i4.30409.
H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE for handling class imbalance in the classification of diabetes with C4.5, SVM, and naive Bayes,” J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89–93, 2020, doi: 10.14710/jtsiskom.8.2.2020.89-93
Article Metrics



This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.