Perbandingan Metode Double Exponential Smoothing, Moving Average, dan Linear Regression pada Peramalan Permintaan Produk Pipa Spec Non-Api Tipe SNI 0068:2013 Kelas 2 /PKB (STK)-400 di WTM-8 PT XYZ

Muhamad Supriyatna, Ade Momon

Submitted : 2024-07-09, Published : 2025-05-08.

Abstract

PT XYZ, as one of the leading steel pipe manufacturers in Indonesia, aims to compare the effectiveness of forecasting methods for predicting the demand for SPEC NON-API TYPE SNI 0068:2013 CLASS 2 /PKB (STK)-400 at WTM-8. The methods compared include Double Exponential Smoothing, Moving Average, and Linear Regression. The forecasting results show that Linear Regression provides the best accuracy with an MSE of 2,619,446 and MAPE of 96.80%, compared to Double Exponential Smoothing (MSE: 17,123,634.831, MAPE: 113.65%) and two variants of Moving Average, namely MA (2) (MSE: 4,193,150, MAPE: 136.68%) and MA (2x3) (MSE: 4,273,548, MAPE: 169.84%). These findings emphasize the importance of using Linear Regression for demand forecasting to improve accuracy and production planning efficiency. Continuous evaluation of forecasting methods and the development of related staff skills are expected to support more effective decision-making and mitigate operational risks.

References

[1]

F. Ahmad, "Penentuan Metode Peramalan pada Produksi Part New Granada Bowl ST di PT X," JISI: Jurnal Integrasi Sistem Industri, vol. 7, no. 1, pp. 31-39, 2020.

[2]

E. Suciyati, "ANALISIS PERENCANAAN KAPASITAS PRODUKSI DENGAN," Tegal, 2019.

[3]

D. Santoso, "Pengertian Perencanaan Produksi," 9 April 2021. [Online]. Available: https://smartpresence.id/blog/hr/pengertian-perencanaan-produksi. [Accessed 9 April 2021].

[4]

M. A. W. J. L. &. I. S. Cindy Ameilia Suhendra, "Sistem Peramalan Persediaan Sparepart Menggunakan Metode Weight Moving Average dan Reorder Point," Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 20, no. 2, pp. 343-354, 2021.

[5]

A. A. &. Wahyudin, "Analisis Peramalan dengan Metode Naive, Linear Regression, Moving Average dan Exponential Smoothing (Studi Kasus: PT Artria Widya)," Jurnal Serambi Engineering, vol. 3, no. 3, pp. 6820 - 6827, 2023.

[6]

C. D. Montgomery and A. L. Johnson, Forecasting and Time Series Analysis, USA: McGraw-Hill Inc., 1998.

[7]

Render and Heizer, Manajemen Operasi, Jakarta: Salemba Empat, 2009.

[8]

,. A. Z. &. D. I. Zihan Silvya, "PENERAPAN METODE WEIGHTED MOVING AVERAGE UNTUK PERAMALAN PERSEDIAAN PRODUK FARMASI," JiTEKH (Jurnal Ilmiah Teknologi Harapan), vol. 8, no. 2, pp. 59-64, 2020.

[9]

R. Rachman, "Penerapan Metode Moving Average dan Exponential Smoothing pada Peramalan Produksi Industri Garment," JURNAL INFORMATIKA, vol. 5, no. 1, p. 211~220, 2018.

[10]

J. N. Aziza, "Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services," Jurnal Teknologi dan Manajemen Industri Terapan , vol. 1, no. 1, pp. 35-41, 2022.

[11]

J. Heizer and B. Render, Manajemen Operasi, Edisi Ketujuh ed., Jakarta: Salemba Empat, 2006.

[12]

M. I. W. &. N. A. K. Rifai, "Peramalan Produksi Mobil Menggunakan Metode Double Exponential Smoothing dengan Algoritma Golden Section," in Bandung Conference Series: Statistics, Bandung, 2022.

[13]

M. L. &. R. Herdiansyah, "Peramalan Persediaan Barang Menggunakan Metode Weighted Moving Average dan Metode Double Exponential Smoothing," Journal of Information System Research (JOSH), vol. 3, no. 2, p. 137−142, 2022.

[14]

V. A. A. D. &. M. L. D. Khamaludin, "Peramalan Penjualan Hijab Sxproject Menggunakan Metode Moving Average dan Exponential Smoothing," Jurnal Keilmuan dan Aplikasi Teknik, vol. 6, no. 2, pp. 13-16, 2019.

[15]

I. K. H. T. H. R. R. M. Y. H. Fadia Jasmine Has Shiela, "Analisis Peramalan Profitabilitas PT. Samudera Indonesia Tbk Menggunakan Metode Regresi Linear," Zeta – Math Journal , vol. 9, no. 1, pp. 41-49, 2024.

[16]

M. I. Hasan, Pokok-pokok materi statistik 1, Jakarta: Bumi Aksara, 1999.

[17]

V. Gaspersz, Production Planning and Inventory Control, Jakarta: Gramedia, 2004.

Article Metrics

Abstract view: 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.