Klasifikasi Ulasan Aplikasi E-KTP Menggunakan Bidirectional Encoder Respresentations from Transformers
Submitted : 2026-01-08, Published : 2026-02-13.
Abstract
The Digital Population Identity application (E-KTP Digital) is part of e-government development aimed at improving the quality of public services. However, user reviews on the Google Play Store are still grouped based on star ratings, so the level of user satisfaction is not yet described in depth. This study aims to classify the sentiment of user reviews of the E-KTP Digital application using the Bidirectional Encoder Representations from Transformers (BERT) method with the Multilingual BERT (mBERT) model. A total of 15,000 reviews were collected from July 3, 2023 to May 31, 2025 and filtered into 1,750 reviews through data cleaning and manual labeling processes. The dataset is divided into training and testing data with ratios of 60:40, 70:30, and 80:20. The training process is conducted using the AdamW optimizer for 4 epochs with a batch size of 16. Model evaluation is planned using accuracy, precision, recall, and F1-score metrics to measure the performance of user review sentiment classification.
Keywords
References
L. S. Wati and G. W. Pradana, “Kajian Aplikasi E-Government Dalam Penerapan Identitas Kependudukan Digital di Kota Surabaya (Studi Kasus Kecamatan Semampir),” Publika, pp. 563–572, Jul. 2024, doi: 10.26740/PUBLIKA.V12N2.P563-572.
M. Alfarizi, “Digitalization of Indonesian Identity Card and Millennial Participation: Investigation of Receiving Digital Transformation in Indonesian Civil Registry Policy,” J. Stud. Kebijak. Publik, vol. 2, no. 1, pp. 41–54, May 2023, doi: 10.21787/JSKP.2.2023.41-54.
Y. F. Setyawan and L. Rudita, “Performance Evaluation of the Digital Population Identity Application Services,” J. Kebijak. Publik, vol. 15, no. 3, pp. 301–307, 2024.
C. Hayati, S. Shofiah Hilabi, A. Lia Hananto, S. Informasi, and U. Buana Perjuangan Karawang, “Klasifikasi dan Prediksi Ulasan Aplikasi Dana pada Google Play Store Menggunakan Algoritma Naive Bayes,” J. Inform. Teknol. dan Sains, vol. 7, no. 2, pp. 596–605, May 2025, doi: 10.51401/JINTEKS.V7I2.5691.
A. Putri Nuriza, E. Novalia, B. Priyatna, F. Ilmu Komputer, and U. Buana Perjuangan Karawang, “Klasifikasi dan Prediksi Ulasan E-Commerce Menggunaka Algoritma Naive Bayes,” JOISIE (Journal Inf. Syst. Informatics Eng., vol. 9, no. 1, pp. 207–217, Jul. 2025, doi: 10.35145/JOISIE.V9I1.4993.
N. Khoirunnisaa, K. Nabila, N. Kesuma, S. Setiawan, A. Yunizar, and P. Yusuf, “Klasifikasi Teks Ulasan Aplikasi Netflix Pada Google Play Store Menggunakan Algoritma Naive Bayes dan Svm,” SKANIKA Sist. Komput. dan Tek. Inform., vol. 7, no. 1, pp. 64–73, Jan. 2024, doi: 10.36080/SKANIKA.V7I1.3138.
N. M. Gardazi, A. Daud, M. K. Malik, A. Bukhari, T. Alsahfi, and B. Alshemaimri, “BERT applications in natural language processing: a review,” Artif. Intell. Rev., vol. 58, no. 6, pp. 1–49, Jun. 2025, doi: 10.1007/S10462-025-11162-5/TABLES/17.
I. F. Putra, A. Purwarianti, and U.-C. Ai-Vlb, “Improving Indonesian Text Classification Using Multilingual Language Model,” Sep. 2020.
L. W. Hao and R. K. Liu, “Transfer Learning Approach for Sentiment Analysis in Low-Resource Austronesian Languages Using Multilingual BERT,” J. Technol. Informatics Eng., vol. 4, no. 1, pp. 75–94, 2025, doi: 10.51903/jtie.v4i1.276.
M. Krisna, H. Prasetyo, I. Much, and I. Subroto, “Penerapan Metode BERT ( Bidirectional Encoder Repretentations from Transformers ) Pada Analisis Emosi Terhadap Program Kerja Lapor Mas Wapres Presiden RI Dengan Presepsi Pengguna Media Sosial X,” vol. 7, no. 1, pp. 37–42, 2025.
K. C. K. and P. B. D. K. C. K. and P. B. Dhumane and ijrbat, “Review Of Data Pre-Processing Techniques In Data Mining,” Int. J. Res. Biosci. Agric. Technol., 2022, doi: 10.29369/IJRBAT.2022.010.3.0016.
B. Nath, S. Tamang, O. Elwasila, and Y. Gulzar, “Task-Oriented Evaluation of Assamese Tokenizers Using Sentiment Classification,” Int. J. Adv. Comput. Sci. Appl., vol. 16, no. 9, pp. 826–836, Sep. 2025, doi: 10.14569/IJACSA.2025.0160979.
J. Acs, E. Hamerlik, R. Schwartz, N. A. Smith, and A. Kornai, “Morphosyntactic probing of multilingual BERT models,” Nat. Lang. Eng., vol. 30, no. 4, pp. 753–792, May 2024, doi: 10.1017/S1351324923000190.
Y. A. Prasetyo, E. Utami, and A. Yaqin, “Pengaruh Komposisi Split Data Terhadap Performa Akurasi Analisis Sentimen Algoritma Naïve Bayes dan SVM,” J. Electr. Eng. Comput., vol. 6, no. 2, pp. 382–390, Oct. 2024, doi: 10.33650/JEECOM.V6I2.9188.
A. Salam and S. R. Sidiq, “SciBERT Optimisation for Named Entity Recognition on NCBI Disease Corpus with Hyperparameter Tuning,” J. Appl. Informatics Comput., vol. 9, no. 2, pp. 432–441, Mar. 2025, doi: 10.30871/JAIC.V9I2.9283.
Y. Huh and Y. Seo, “Multilingual BERT-based Classification and Recommendation Model for Supporting Innovation Finance Decisions,” ICAIF 2025 - 6th ACM Int. Conf. AI Financ., vol. 25, pp. 823–828, Nov. 2025, doi: 10.1145/3768292.3770384;SUBPAGE:STRING:BASIC.
K. Dedes, Fatimatuzzahra, M. Hermansyah, A. B. Setiawan, R. P. Pradana, and A. F. M. Harvyanti, “BERT Sentimen: Fine-Tuning Multibahasa untuk Ulasan Bahasa Indonesia,” J. Komput. Teknol. Inf. Sist. Inf., vol. 4, no. 2, pp. 1080–1084, Sep. 2025, doi: 10.62712/JUKTISI.V4I2.585.
N. M. Gardazi, A. Daud, M. K. Malik, A. Bukhari, T. Alsahfi, and B. Alshemaimri, “BERT applications in natural language processing: a review,” Artif. Intell. Rev. 2025 586, vol. 58, no. 6, pp. 166-, Mar. 2025, doi: 10.1007/S10462-025-11162-5.
A. T. Riadi, F. Indriani, M. I. Mazdadi, M. R. Faisal, and R. Herteno, “Cross-Temporal Generalization of IndoBERT for Indonesian Hoax News Classification,” J. Tek. Inform., vol. 6, no. 5, pp. 5291–5304, Oct. 2025, doi: 10.52436/1.JUTIF.2025.6.5.4757.
A. Nanyonga and G. Wild, “Classification of Operational Records in Aviation Using Deep Learning Approaches,” 2025 Int. Conf. Pervasive Comput. Technol. ICPCT 2025, pp. 997–1002, 2025, doi: 10.1109/ICPCT64145.2025.10940469.
M. De et al., “Classification of User Reports for Detection of Faulty Computer Components using NLP Models: A Case Study,” Mar. 2025.
Article Metrics
Abstract view: 0 times

This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.





