K-Means Clustering on Rice Harvest Data for Planting Season Recommendation in Subak Cepaka, Tabanan

Ni Made Cahyani Dewi, Ahmad Tri Hidayat

Submitted : 2025-10-06, Published : 2025-11-30.

Abstract

The Subak farming system in Tabanan Regency, Bali, is vital as a primary rice granary but faces challenges in determining optimal planting patterns. Planting decisions based only on inherited experience often do not match climate conditions, reducing productivity and increasing crop failure risks. This study implements the K-Means Clustering algorithm on five years of historical rice harvest data (2020–2024) to generate accurate planting season recommendations. Monthly data were analyzed and grouped into three categories: rainy, dry, and transitional seasons. The clustering results were integrated into a mobile application that provides farmers with accessible recommendations through an interactive interface and visualization. The effectiveness of the clustering model was evaluated using the Silhouette Score, which indicated good separation and cohesion among clusters, while efficiency was assessed through processing time and algorithm simplicity, confirming that K-Means performed the task with minimal computational cost. This system enables farmers to make data-driven planting decisions, optimize productivity, and support sustainable food security in Bali.

Keywords

K-Means, Subak, Recommendation, Historical Varvest Data

References

UNESCO, “Cultural Landscape of Bali Province: The Subak System as a Manifestation of the Tri Hita Karana Philosophy.” 2012. [Online]. Available: https://whc.unesco.org/en/list/1194/

V. Sitokonstantinou and others, “Fuzzy clustering for the within-season estimation of cotton phenology using remote sensing time series,” Remote Sens., vol. 15, no. 12, p. 3115, 2023, doi: 10.3390/rs15123115.

I. Sanela, A. Nazir, and others, “Penerapan metode clustering dengan K-Means untuk memetakan potensi tanaman padi di Sumatera,” J. Syst. Informatics, vol. 7, no. 2, pp. 88–95, 2023, doi: 10.47065/josyc.v5i1.4523.

A. Mubarok, A. A. Syahputra, A. T. Permana, L. Sholiah, and Tarwoto, “Implementasi data mining untuk clustering lowongan pekerjaan menggunakan metode algoritma K-Means,” J. Teknol. Inf. dan Komun., vol. 9, no. 2, pp. 162–171, 2022, doi: 10.35870/jtik.v9i2.3438.

H. J. et al., “Clustering and smoothing pipeline for management zone delineation,” Sensors, vol. 22, no. 9, pp. 1–18, 2022, doi: 10.3390/s22020645.

K. P. Swain, S. Tripathy, and R. Nayak, “Empowering crop selection with ensemble learning and K-Means clustering: A modern agricultural perspective,” Open Agric., vol. 9, no. 1, pp. 122–132, 2024.

S. M. Shawon and others, “Machine learning in agriculture: Crop yield prediction – A comprehensive review,” Artif. Intell. Agric., vol. 15, pp. 74–95, 2024, doi: 10.1016/j.atech.2024.100718.

F. Guevara-Viejo and S. Martínez, “Application of K-Means clustering to assess agricultural production systems,” Agronomy, vol. 11, no. 6, p. 1123, 2021, doi: 10.3390/agronomy11061123.

K. Setiawan and Y. Y. A. Saputry, “Clustering data calon siswa baru menggunakan metode K-Means di Pusat Pengembangan Anak Fajar Baru Cengkareng,” J. Teknol. Inf. dan Komun., vol. 8, no. 1, pp. 75–83, 2024, doi: 10.35870/jtik.v8i1.1426.

H. Pratiwi and E. Handayani, “Implementasi algoritma K-Means untuk pengelompokan data hasil pertanian,” JOISIE J. Inf. Syst. Informatics Eng., vol. 4, no. 2, pp. 87–95, 2022.

S. Wijayanto and M. Y. Fathoni, “Pengelompokkan produktivitas tanaman padi di Jawa Tengah menggunakan algoritma K-Means,” J. Nas. Teknol. Inf., vol. 5, no. 2, pp. 134–145, 2021.

E. A. P. Putri, “K-Means clustering untuk pengelompokan daerah penghasil padi di Indonesia berdasarkan luas panen, produksi, dan produktivitas padi tahun 2022,” Mikrotik J., vol. 4, no. 1, pp. 55–65, 2024.

R. H. Cokro and others, “Segmentasi provinsi penghasil padi di Indonesia berdasarkan karakteristik produksi tahun 2024 menggunakan clustering K-Means,” Kohesi J. Ilmu Komput., vol. 8, no. 1, pp. 50–60, 2025.

R. Farismana, “Penerapan K-Means clustering untuk pemetaan produktivitas padi dan prediksi panen di Kabupaten Indramayu,” J. Ilmu Sos. dan Manaj. Rev., vol. 5, no. 2, pp. 100–110, 2024, doi: 10.52362/jisamar.v8i3.1572.

Chamidah, “Klasterisasi provinsi di Indonesia berdasarkan produktivitas komoditas pangan menggunakan algoritma K-Means,” J. Sains Terap., vol. 8, no. 2, pp. 101–110, 2022.

S. N. Sofyan, D. Kurniawan, and A. Rachmawati, “Implementasi data mining untuk clustering produktivitas bawang merah menggunakan metode K-Means,” Jatilima J. Teknol. Inf. dan Multimed., vol. 4, no. 1, pp. 45–53, 2025.

R. Hesananda, “Penerapan klasterisasi K-Means terhadap produktivitas padi di Pulau Sumatera sebagai strategi pendukung ketahanan pangan,” J. Informatics Adv. Comput., vol. 6, no. 1, pp. 54–63, 2025, doi: 10.35814/ve9jhz24.

F. Zhu, C. Zhu, Z. Fang, W. Lu, and J. Pan, “Using Constrained K-Means Clustering for Soil Texture Mapping with Limited Soil Samples,” Agronomy, vol. 15, no. 5, p. 1220, 2025, doi: 10.3390/agronomy15051220.

L.-Y. Wu and others, “Research on Using K-Means Clustering to Explore High-Risk Products with Ethylene Oxide Residues and Their Manufacturers in Taiwan,” Foods, vol. 13, no. 16, p. 2510, 2024, doi: 10.3390/foods13162510.

B. Zhang and others, “Research on Automatic Alignment for Corn Harvesting Based on Euclidean Clustering and K-Means Clustering,” Agriculture, vol. 14, no. 11, p. 2071, 2024, doi: 10.3390/agriculture14112071.

D. Santoso and others, “Cloud-based framework for agricultural data sharing and analytics,” J. Cloud Comput., vol. 12, pp. 1–14, 2023, doi: 10.1186/s13677-023-00412-6.

F. Guevara-Viejó and others, “Application of K-Means Clustering Algorithm to Commercial Parameters of Pleurotus spp. Cultivated on Representative Agricultural Wastes from Province of Guayas,” J. Fungi, vol. 7, no. 7, p. 537, 2021, doi: 10.3390/jof7070537.

M. K. Shukla and P. Sharma, “Fuzzy K-Means and Principal Component Analysis for Classifying Soil Properties for Efficient Farm Management and Maintaining Soil Health,” Sustainability, vol. 15, no. 17, p. 13144, 2023, doi: 10.3390/su151713144.

A. Filintas, N. Gougoulias, N. Kourgialas, and E. Hatzichristou, “Management Soil Zones, Irrigation, and Fertigation Effects on Yield and Oil Content of Coriandrum sativum L. Using Precision Agriculture with Fuzzy k-Means Clustering,” Sustainability, vol. 15, no. 18, p. 13524, 2023, doi: 10.3390/su151813524.

S. Zhang, J. Guo, and Z. Wang, “Combing K-means Clustering and Local Weighted Maximum Discriminant Projections for Weed Species Recognition,” Front. Comput. Sci., vol. 1, p. 4, 2019, doi: 10.3389/fcomp.2019.00004.

M. Nikhar and L. P. Thakre, “Smart Agricultural Farm Enhancement with K-Means Learning,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 8, pp. 166–169, 2020.

Article Metrics

Abstract view: 54 times
Download     : 5   times Download     : 4   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.