Topic Analysis of Indonesian Online News on the Free Nutritious Meal Program Using Non-Negative Matrix Factorization

Irmma Dwijayanti, Alfirna Rizqi Lahitani, Muhammad Habibi

Submitted : 2025-10-03, Published : 2025-12-24.

Abstract

The Free Nutritious Meal Program (MBG) represents a key policy of the Indonesian government to address malnutrition and stunting by providing nutritious meals for students. This study applies Non-Negative Matrix Factorization (NMF) for topic modeling on a long-text corpus of 5,390 digital news articles collected from seven national portals, with the aim of mapping public discourse on MBG. The optimal number of topics was determined using the coherence score, yielding nine distinct themes. Findings indicate that media coverage primarily revolves around program distribution in schools, the role of Micro, Small, and Medium Enterprises (MSMEs) and the food sector, budget allocation, political dynamics of national figures, and health-related concerns such as student poisoning cases. The results suggest that MBG is widely perceived as a strategic policy with broad implications for public policy, economic development, political debate, and social welfare. Methodologically, this research demonstrates the effectiveness of NMF in identifying latent thematic structures within long-text news corpora, offering insights into how digital media frames and interprets government initiatives.

Keywords

Free Nutritious Meal Program, NMF, MBG, Online News, Topic Modeling

Full Text:

PDF

References

Inspektorat Jenderal Kemendikbudristek, “Program Makan Bergizi Gratis: Langkah Strategis Pemenuhan Gizi dan Penguatan Karakter Anak Bangsa,” https://itjen.kemdikbud.go.id/. Accessed: Feb. 02, 2025. [Online]. Available: https://itjen.kemdikbud.go.id/web/program-makan-bergizi-gratis-langkah-strategis-pemenuhan-gizi-dan-penguatan-karakter-anak-bangsa/

A. Ceron, “Internet, News, and Political Trust: The Difference between Social Media and Online Media Outlets,” J. Comput. Commun., vol. 20, no. 5, pp. 487–503, Sep. 2015, doi: 10.1111/JCC4.12129.

P. Saha, A. Kevin, and C.-C. Chang, “Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs,” Oct. 2024, Accessed: Oct. 02, 2025. [Online]. Available: https://arxiv.org/pdf/2410.03071

E. Puspita, F. Shiddieq, and F. F. Roji, “Pemodelan Topik pada Media Berita Online Menggunakan Latent Dirichlet Allocation (Studi Kasus Merek Somethinc),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 481–489, Feb. 2024, doi: 10.57152/MALCOM.V4I2.1204.

A. Goyal and I. Kashyap, “Comprehensive Analysis of Topic Models for Short and Long Text Data,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 12, pp. 249–259, Dec. 2023, doi: 10.14569/IJACSA.2023.0141226.

M. Khan, S. S. Khan, and Y. Alharbi, “Text Mining Challenges and Applications, A Comprehensive Review,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 20, no. 12, pp. 138–148, 2020, Accessed: Oct. 01, 2025. [Online]. Available: https://www.researchgate.net/publication/348409623_Text_Mining_Challenges_and_Applications_A_Comprehensive_Review?

R. Egger and J. Yu, “A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts,” Front. Sociol., vol. 7, p. 886498, May 2022, doi: 10.3389/FSOC.2022.886498/BIBTEX.

I. Dwijayanti, M. Habibi, K. Kusumaningtyas, and S. Riyadi, “Tweets Classification of Mental Health Disorder in Indonesia Using LDA and Cosine Similarity,” Telemat. J. Inform. dan Teknol. Inf., vol. 21, no. 1, pp. 41–54, 2024, doi: 10.31515/telematika.v21i1.10725.

K. Kusumaningtyas, I. Dwijayanti, A. R. Lahitani, and M. Habibi, “Analisis Tren Topik dalam Ulasan Negatif Aplikasi M-Banking Menggunakan Latent Dirichlet Allocation,” J. FASILKOM, vol. 14, no. 3, pp. 549–555, Nov. 2024, doi: 10.37859/JF.V14I3.8035.

M. H. Asnawi, A. A. Pravitasari, T. Herawan, and T. Hendrawati, “The Combination of Contextualized Topic Model and MPNet for User Feedback Topic Modeling,” IEEE Access, vol. 11, pp. 130272–130286, 2023, doi: 10.1109/ACCESS.2023.3332644.

R. Muthusami, N. Mani Kandan, K. Saritha, B. Narenthiran, N. Nagaprasad, and K. Ramaswamy, “Investigating topic modeling techniques through evaluation of topics discovered in short texts data across diverse domains,” Sci. Rep., vol. 14, no. 1, pp. 1–13, Dec. 2024, doi: 10.1038/S41598-024-61738-4;SUBJMETA.

O. Babalola, B. Ojokoh, and O. Boyinbode, “Comprehensive Evaluation of LDA, NMF, and BERTopic’s Performance on News Headline Topic Modeling,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 268–289, Nov. 2024, doi: 10.62411/JCTA.11635.

A. Rkia, A. Fatima-Azzahrae, A. Mehdi, and L. Lily, “NLP and Topic Modeling with LDA, LSA, and NMF for Monitoring Psychosocial Well-being in Monthly Surveys,” Procedia Comput. Sci., vol. 251, pp. 398–405, Jan. 2024, doi: 10.1016/J.PROCS.2024.11.126.

I. Made, A. Santosa, L. Putu, A. Prapitasari, and I. P. Ramayasa, “Sentiment Analysis on the Centralized Isolation Policy for Covid-19 Response in Bali Province,” Compiler, vol. 11, no. 2, pp. 45–50, Dec. 2022, doi: 10.28989/compiler.v11i2.1356.

A. W. Murdiyanto and M. Habibi, “Analysis of Deep Learning Approach Based on Convolution Neural Network (CNN) for Classification of Web Page Title and Description Text,” Compiler, vol. 11, no. 2, pp. 51–58, Dec. 2022, doi: 10.28989/COMPILER.V11I2.1327.

Ismail Olaniyi Muraina, Olayemi Muyideen Adesanya, Moses Adeolu Agoi, and Solomon Onen Abam, “The Necessity of Exploratory Data Analysis: How are preprocessing activities beneficial to Data Analysts and Professional Researchers in Academia? ,” | Int. J. Sci. Res. Comput. Sci. Eng., vol. 11, no. 3, pp. 22–28, Apr. 2023, Accessed: Oct. 03, 2025. [Online]. Available: https://ijsrcse.isroset.org/index.php/j/article/view/528

R. Egger and J. Yu, “A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts,” Front. Sociol., vol. 7, p. 886498, May 2022, doi: 10.3389/FSOC.2022.886498.

A. Alfajri, D. Richasdy, and M. A. Bijaksana, “Topic Modelling Using Non-Negative Matrix Factorization (NMF) for Telkom University Entry Selection from Instagram Comments,” J. Comput. Syst. Informatics, vol. 3, no. 4, pp. 485–492, 2022, doi: 10.47065/josyc.v3i4.2212.

R. P. F. Afidh and Syahrial, “Pemodelan Topik Menggunakan n-Gram dan Non-negative Matrix Factorization,” J. Inf. dan Teknol., pp. 265–275, Sep. 2023, doi: 10.60083/JIDT.V5I1.385.

Z. A. Guven, B. Diri, and T. Cakaloglu, “Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets,” Proc. - 2019 Innov. Intell. Syst. Appl. Conf. ASYU 2019, Sep. 2021, doi: 10.1109/ASYU48272.2019.8946435.

M. Belford, B. Mac Namee, and D. Greene, “Stability of topic modeling via matrix factorization,” Expert Syst. Appl., vol. 91, pp. 159–169, Jan. 2018, doi: 10.1016/J.ESWA.2017.08.047.

O. Sumantri Riyanto and M. Rianita Elfrida Sinaga, “PENEGAKAN HAK ANAK ATAS MAKANAN AMAN DAN SEHAT: STUDI KASUS KERACUNAN DALAM PROGRAM MAKAN BERGIZI GRATIS DITINJAU DARI TANGGUNG JAWAB NEGARA,” Juris Humanit. J. Ris. dan Kaji. Huk. Hak Asasi Mns., vol. 4, no. 1, pp. 1–11, Jun. 2025, doi: 10.37631/JRKHM.V4I1.84.

A. Sofian and D. N. Lestarini, “Analisis framing pemberitaan tentang kebijakan pemerintah dalam menangani kasus Covid-19,” COMMICAST, vol. 2, no. 1, pp. 58–70, Feb. 2021, doi: 10.12928/COMMICAST.V2I1.3150.

A. Denisova, “Viral journalism. Strategy, tactics and limitations of the fast spread of content on social media: Case study of the United Kingdom quality publications,” Journalism, vol. 24, no. 9, pp. 1919–1937, Sep. 2023, doi: 10.1177/14648849221077749.

A. Al Aslah, A. Anggana, and R. R. Ramadhan, “Analisis Framing dan Sentimen Media Daring terhadap Isu Dinasti Politik Keluarga Jokowi,” J. Ilmu Polit. dan Komun., vol. 14, no. 2, pp. 1–16, Dec. 2024, doi: 10.34010/JIPSI.V14I2.14065.

Harry Fajar Maulana Fajar and Fadel Arroyan, “Narrative Fractures in Policy Communication: Framing and Public Sentiment on Indonesia’s Free Nutritious Meals Program,” in The 6th Jogjakarta Communication Conference (JCC), Springer Science and Business Media Deutschland GmbH, 2025, pp. 309–321. doi: 10.1007/S10115-023-01956-W.

Article Metrics

Abstract view: 4 times
Download     : 1   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.