PENCOCOKAN GAMBAR SIDIK JARI DENGAN KAMERA HANDPHONE MENGGUNAKAN METODE RANSAC DAN TRANSFORMASI AFFINE BERBASIS ANDROID

Haruno Sajati, Dwi Nughraheny, Nova Adi Suwarso

Abstract

Fingerprints occur due to stroke differences. These stroke differences have occurred at a time when humans are still fetal form. A normal fingerprint pattern is formed of lines and spaces. These lines are called ridges whereas the spaces between these lines are called valleys. To make an introduction to the fingerprint image requires a variety of support tools. Starting from a fingerprint machine, a smartphone that has a fingerprint sensor and much more. In this research, the acquisition of image is done by grayscaling, histogram equalization, gabor filter, binary, thinning, 8 neighbors, matching.The result of making android application with the method that has been described to show unfavorable results seen from the calculation of the accuracy of 63%. Based on testing the specs android OS devices, this application can run on android with OS 4.4.2 specification kitkat.Fingerprints occur due to stroke differences. These stroke differences have occurred at a time when humans are still fetal form. A normal fingerprint pattern is formed of lines and spaces. These lines are called ridges whereas the spaces between these lines are called valleys. To make an introduction to the fingerprint image requires a variety of support tools. Starting from a fingerprint machine, a smartphone that has a fingerprint sensor and much more. In this research, the acquisition of image is done by grayscaling, histogram equalization, gabor filter, binary, thinning, 8 neighbors, matching.The result of making android application with the method that has been described to show unfavorable results seen from the calculation of the accuracy of 63%. Based on testing the specs android OS devices, this application can run on android with OS 4.4.2 specification kitkat.

 

Keywords : OCR Fingerprint, Fingerprint recognition, Minutiae based matching, Fingerprint image processing.

Keywords

OCR Fingerprint, Fingerprint recognition, Minutiae based matching, Fingerprint image processing

References

Berbasis Tekstur Sebagai Pendukung Diagnosis Kanker Payudara Adi, Kusworo., 2003. Perancangan dan Realisasi Sistem Ekstraksi Ciri Sidik Jari Berbasis Algoritma Filterbank Gabor. Semarang: JurusanFisika, Universitas Diponegoro.

Arifin, AnisaAini., dkk. 2013. Optimasi Deteksi Marker Pada Nyartoolkit Menggunakan MetodeRansac. Malang: Universitas Brawijaya.

Cahyana, Fajar MIT., 2014. Perancangan Program Penghitung Jumlah Kendaraan Di Lintasan Jalan Raya Satu Arah Menggunakan Bahasa Pemrograman C++ DenganPustakaOpencv. Malang: Universitas Brawijaya.

Elia, Tiara., 2015. Aplikasi Peningkatan Kualitas Citra Menggunakan Metode Histogram Equalization. Medan: Jurusan Teknik Informatika, Sekolah Tinggi Manajemen Informatika dan Komputer.

Juheri, Ahmad., 2015. Identifikasi Pola Sidik Jari Berbasis Transaformasi Wavelet dan Jaringan Syaraf Tiruan Propagasi Balik. Semarang: Jurusan Fisika, Universitas Negeri Semarang.

Elvayandri. 2002. Sistem Keamanan Akses Menggunakan Pola Sidik Jari Berbasis Jaringan Saraf Tiruan. Projek Akhir Keamanan Sistem Informasi. Bandung: Institut Teknologi Bandung.

Legawa, Tri.,dkk. 2011. Pengenalan Sidik Jari Menggunakan Algoritma Pencocokan Adaptif Berdasarkan Penjajaran Minutiae. Semarang: Jurusan Teknik Elektro Universitas Diponegoro.

Nampira, YustiFitriyani., 2012. Aplikasi Deteksi Mikrokalsifikasi dan Klasifikasi Citra Mammogram. Depok: Jurusan Teknik Informatika, Universitas Gunadarma.

Nasir, Muhammad., dkk.,2012. Pengujian Kualitas Citra Sidik Jari Kotor Menggunakan Learning Vector Quantization. Aceh: Jurusan Teknik Elektro, Politeknik Negri Lhokseumawe.

Pangestu, Peter., 2015. Penerapan Histogram Equalization pada Optical Character Recognition Preprocessing. Tangerang: Jurusan Teknik Informatika, Universitas Multimedia Nusantara, Tangerang, Indonesia.

Suroto., 2009. Studi Penyempurnaan Identifikasi Sidik Jari Pada Algoritma Minutia. Depok Jawa Barat: Jurusan Teknik Elektro, Universitas Indonesia.

Tanzil, RobbinKristanto., 2015. Pengenalan Sidik Jari Menggunakan Jaringan Saraf. Surabaya: Sekolah Tinggi Teknik Surabaya.

Ratnadewi.,dkk. 2004. Identifikasi Sidik jari menggunakan Metoda Modified Gabor Filter ( MGF ). Bandung: FakultasTeknik, Universitas Kristen Maranatha.

Zhu, Wen.,dkk. 2010. Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Practical SAS® Implementations. Washington: Octagon Research Solution, Wayne, Pa.

Article Metrics

Abstract view: 426 times
Download     : 413   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks