Combatting Heart Diseases: Advanced Predictions Using Optimized DNN Architecture
Submitted : 2023-10-26, Published : 2023-11-30.
Abstract
Keywords
References
A. Mehmood et al., “Prediction of Heart Disease Using Deep Convolutional Neural Networks,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 3409–3422, 2021, doi: 10.1007/s13369-020-05105-1.
J. A. Ramirez-Bautista, A. Hernández-Zavala, S. L. Chaparro-Cárdenas, and J. A. Huerta-Ruelas, “Review on plantar data analysis for disease diagnosis,” Biocybern. Biomed. Eng., vol. 38, no. 2, pp. 342–361, 2018.
P. Balakumar, K. Maung-U, and G. Jagadeesh, “Prevalence and prevention of cardiovascular disease and diabetes mellitus,” Pharmacol. Res., vol. 113, pp. 600–609, 2016.
N. K. Kumar, G. S. Sindhu, D. K. Prashanthi, and A. S. Sulthana, “Analysis and prediction of cardio vascular disease using machine learning classifiers,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 15–21.
S. Islam, N. Jahan, and M. E. Khatun, “Cardiovascular disease forecast using machine learning paradigms,” in 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), 2020, pp. 487–490.
D. Zhang et al., “Heart Disease Prediction Based on the Embedded Feature Selection Method and Deep Neural Network,” J. Healthc. Eng., vol. 2021, no. Ml, 2021, doi: 10.1155/2021/6260022.
B. Dun, E. Wang, and S. Majumder, “Heart disease diagnosis on medical data using ensemble learning,” Comput. Sci, vol. 1, pp. 1–5, 2016.
G. Guidi, M. C. Pettenati, P. Melillo, and E. Iadanza, “A machine learning system to improve heart failure patient assistance,” IEEE J. Biomed. Heal. informatics, vol. 18, no. 6, pp. 1750–1756, 2014.
P. Jeatrakul, K. W. Wong, and C. C. Fung, “Using misclassification analysis for data cleaning,” in International Workshop on Advanced Computational Intelligence and Intelligent Informatics, IWACIII 2009, 2009.
M. Seyednourani, “A robust process model with two-stage optimization methodology for liquid composite molding process,” 2020.
J. T. Hancock and T. M. Khoshgoftaar, “Survey on categorical data for neural networks,” J. Big Data, vol. 7, no. 1, pp. 1–41, 2020.
D. K. Thara, B. G. PremaSudha, and F. Xiong, “Auto-detection of epileptic seizure events using deep neural network with different feature scaling techniques,” Pattern Recognit. Lett., vol. 128, pp. 544–550, 2019.
W. S. E. Putra, “Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101,” J. Tek. ITS, vol. 5, no. 1, 2016, doi: 10.12962/j23373539.v5i1.15696.
I. Alfarobi, T. A. Tutupoly, and A. Suryanto, “Komparasi Algoritma C4.5, Naive Bayes Dan Random Forest Untuk Klasifikasi Data Kelulusan Mahasiswa Jakarta,” Mitra dan Teknol. Pendidik, vol. IV, no. 1, pp. 1–14, 2018.
I. Mackie, Introduction to Deep Learning. Springer, 2018. doi: 10.1007/978-3-319-73004-2.
T. Djatna, M. K. D. Hardhienata, and A. F. N. Masruriyah, “An Intuitionistic Fuzzy Diagnosis Analytics for Stroke Disease,” J. Big Data, pp. 1–14, 2018, doi: 10.1186/s40537-018-0142-7.
M. N. Nasir and I. Budiman, “Perbandingan Pengaruh Nilai Centroid Awal Pada Algoritma K-Means Dan K-Means ++ Confusion Matrix,” Semin. Nas. Ilmu Komput., vol. 1, pp. 118–127, 2017.
Article Metrics
Abstract view: 124 timesDownload  : 89 times Download  : 24 times
This work is licensed under a Creative Commons Attribution 4.0 International License.
Refbacks
- There are currently no refbacks.