Information System for Course Quotas Forecasting using Trend Analysis Method

Afwan Anggara, Widya Setiafindari

Submitted : 2023-03-12, Published : 2023-05-31.

Abstract

Determining the class quota at each period of filling out the KRS (Study Plan Card) at the beginning of the semester is often an activity that cannot be determined easily. It is due to several important factors in it, one of the most influential and difficult things is the uncertainty when determining the quota for the number of students who will take the course, if later there is an error in predicting the number of students who will take the course, then the class quota that is prepared will certainly be less so that it leads to the disruption of the ongoing Student KRS registration process. The method used in this study is predicting using trend analysis which aims to determine how much capacity or inventory is needed for decision-making, then a system will be designed that can be used to predict the number of predicting quotas for courses that will be provided. The system design applies the system development method with UML. The stages of the process are carried out from collecting and processing subject offer quota data several previous academic years. This research has succeeded in building a model to make predictions using the Trend Analysis method, so that it can be used as a recommendation for the number of quotas offered for the next academic year.

Keywords

Information Systems;Forecasting;Courses;Retake Courses;Trend Analysis;

References

M. Zain, N. K. D. Ari Jayanti, and Y. P. Atmojo, “Implementasi Forecasting Pada Perancangan Sistem Pembukaan Kelas di STIKOM Bali dengan Menggunakan Metode Regresi Linear”, Jurnal Explora Informatika, vol. 3, no. 1, pp. 17-28, Sep. 2016.

M. Qamal, S. Hasan, and T. Wulandari, “Prediksi Jumlah Mahasiswa Baru Universitas Malikussaleh Menggunakan Metode DMA (Double Moving Average),” TECHSI - Jurnal Teknik Informatika, 2019, doi: 10.29103/techsi.v11i3.1491.

A. Nugroho, K. A. Laksitowening, and I. Atastina, Prediksi Jumlah Mahasiswa Mengulang Mata Kuliah Menggunakan Metode Decision Tree C4.5 Dan Reduced Error Prunning. 2020.

N. Nurwanto, Kusrini, and H. A.Fatta, “Prediksi Peserta Matakuliah Menggunakan Artificial Neural Network - Fuzzy Inferented System (Ann-Fis) Studi Kasus: Universitas Muhammadiyah Surakarta”, JOTI, Vol.1 No.2., pp.84-88, 2020.

N. Slack, S. Chambers, R. Johnston, and A. Betts, “Operations and Process Management,” Operations Management, 2012.

N. L. A. K. Yuniastari and I. W. W. Wirawan, “Peramalan Permintaan Produk Perak Menggunakan Metode Simple Moving Average Dan Single Exponential Smoothing,” Sistem dan Informatika STIKOM Bali, 2016.

J. Supranto, Statistik Teori dan Aplikasi, Edisi Ketujuh. Jakarta: Erlangga, 2000.

A. Kadir, Pengenalan Sistem Informasi Edisi Revisi. Yogyakarta: Andi, 2014.

Hernadewita, Y. K. Hadi, M. J. Syaputra, and D. Setiawan, “Peramalan Penjualan Obat Generik Melalui Time Series Forecasting Model Pada Perusahaan Farmasi di Tangerang,” JIEMAR, Vol. 1 No., no. https://doi.org/10.7777/jiemar.v1i2.38, 2020.

T. Caloiero, R. Coscarelli, and E. Ferrari, “Application of the Innovative Trend Analysis Method for the Trend Analysis of Rainfall Anomalies in Southern Italy,” Water Resources Management, 2018, doi: 10.1007/s11269-018-2117-z.

Article Metrics

Abstract view: 262 times
Download     : 124   times Download     : 37   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.