Classification of Twitter User Sentiments Against Government Policies in Overcoming Covid-19 in Indonesia

Hermawan Arief Putranto, Taufiq Rizaldi, Wahyu Kurnia Dewanto, Rokhimatus Zahro

Submitted : 2022-06-30, Published : 2022-12-31.

Abstract

Sentiment classification is a field of study that analyzes a person's opinions, sentiments, judgments, evaluations, attitudes, and emotions regarding a particular topic, service, product, individual, organization, or activity. The topic that is currently being discussed is Covid-19. Covid19 is a disease caused by the corona virus, which was first identified in the city of Wuhan, China. This disease has spread throughout the world, including Indonesia. In this regard, the Indonesian government issued a policy as an effort to break the chain of the spread of the corona virus. However, this encourages the emergence of various kinds of public responses. One of them is Twitter users, there are pros and cons responses from the community in responding to government policies and causing problems, namely the difficulty of knowing positive, neutral or negative responses given by the community. Based on the explanation above, a sentiment analysis was carried out. This analysis was carried out by utilizing data from Twitter with the keywords at home, vaccines for the people of Indonesia, and PSBB, covid, covid19, covid Indonesia, vaccines Jakarta, vaccines, vaccines Restore RI, and vaccines for the sake of protecting the Republic of Indonesia. Where the data will be processed through several stages, namely preprocessing, word weighting and sentiment analysis. The results of the classification of the sentiment classification of the majority of Twitter users are neutral, namely 69.2% of the data classified as neutral sentiment, 30.1% of the data classified as positive sentiment, and 7% of the data having negative sentiment.

Keywords

Klasifikasi sentiment, Covid-19, Twitter, Naïve Bayes, Pre-Processing

Full Text:

PDF

References

F. Alamsyah, “Covid-19: penyebab, penyebaran dan pencegahannya,” Indones. Sch. Netw., pp. 5–9, 2020, [Online]. Available: https://eprints.uai.ac.id/1711/.

D. Rustiana and N. Rahayu, “Analisis Sentimen Pasar Otomotif Mobil: Tweet Twitter Menggunakan Naïve Bayes,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 1, pp. 113–120, 2017, doi: 10.24176/simet.v8i1.841.

H. A. Putranto, O. Setyawati, and W. Wijono, “Pengaruh Phrase Detection dengan POS-Tagger terhadap Akurasi Klasifikasi Sentimen menggunakan SVM,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 5, no. 4, 2016, doi: 10.22146/jnteti.v5i4.271.

D. Xhemali, C. J. Hinde, and R. G. Stone, “Naive Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages,” Int. J. Comput. Sci., vol. 4, no. 1, pp. 16–23, 2009, [Online]. Available: http://cogprints.org/6708/.

W. E. Nurjanah, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Pembobotan Jumlah Retweet,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1750–1757, 2017.

R. Ardiansyah, “Analisis Sentimen Calon Presiden Dan Wakil Presiden Periode 2019-2024 Pasca Debat Pilpres Di Twitter,” Sci. Comput. Sci. Informatics J., vol. 2, no. 1, p. 21, 2019, doi: 10.22487/j26204118.2019.v2.i1.13068.

A. P. Natasuwarna, “Tantangan Menghadapi Era Revolusi 4.0 - Big Data dan Data Mining,” in Seminar Nasional Hasil Pengabdian Kepada Masyarakat, 2019, pp. 23–27.

S. A. Qutsiah, M. K. Sophan, and Y. F. Hendrawan, “Aplikasi Pembelajaran Matematika Dasar Bangun Datar Menggunakan Python Pada Perangkat Bergerak,” SCAN - J. Teknol. Inf. dan Komun., vol. 11, no. 3, pp. 13–22, 2016, [Online]. Available: http://www.ejournal.upnjatim.ac.id/index.php/scan/article/view/868.

R. Mudhar, “Pembangunan Sistem Informasi Helpdesk Ticketing System Menggunakan Django Framework (Studi Kasus: SMK Saradan),” UIN Syarif Hidayatullah, 2016.

A. N. Rahimah, D. S. Rusdianto, and M. T. Ananta, “Pengembangan Sistem Pengelolaan Ruang Baca Berbasis Web Dengan Menggunakan Django Framework ( Studi Kasus : Ruang Baca Fakultas Ilmu Komputer Universitas Brawijaya ),” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 5, pp. 4439–4446, 2019.

A. A. S. Daironi and W. Yustanti, “Perbandingan Penggunaan NoSQL Mongodb Dan Mysql Pada Basis Data Forum Komunikasi,” Manaj. Inform., vol. 6, no. 1, pp. 134–142, 2016.

F. Ratnawati, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter,” INOVTEK Polbeng - Seri Inform., vol. 3, no. 1, p. 50, 2018, doi: 10.35314/isi.v3i1.335.

Article Metrics

Abstract view: 217 times
Download     : 110   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.