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 For effective transportation management, technology-based solutions are 
needed due to the growing number of cars in metropolitan areas. Based on 
digital picture data, this paper suggests a vehicle classification model that 
makes use of Artificial Neural Networks (ANN) and the backpropagation 
technique. An input layer, a hidden layer with 64 sigmoid-activated neurons, 
and an output layer with 7 softmax-activated neurons make up the feedforward 
neural network model. 16,185 photos from eight different car classes—
Hummer, Toyota Innova, Hyundai Creta, Suzuki Swift, Audi, Mahindra 
Scorpio, Rolls-Royce, and Tata Safari—make up the dataset, which was 
obtained from Roboflow Inc. The data is divided 80:20 between testing and 
training. Vehicle dimensions, the primary RGB color, the number of axles, and 
license plate recognition are examples of input features. Categorical 
crossentropy loss and gradient descent are used to train the model. The 
evaluation's findings indicate 100% test accuracy and 85% validation accuracy 
at epoch 28. Strong performance is shown by precision, recall, and F1-score; 
yet, in visually comparable classes, small errors do occur. These results show 
that backpropagation-based artificial neural networks (ANNs) are useful for 
classifying vehicles and can be used in traffic monitoring and automated 
parking systems. 
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1. INTRODUCTION. 

According to projections, Indonesia's motorized vehicle population has grown significantly in recent 
years, from approximately 120 million units in the previous year to a greater amount in 2023. Numerous facets 
of life are directly impacted by this surge, such as the rise in air pollution, traffic jams, and the need for an 
efficient transportation management system. Automatic vehicle type recognition and classification is therefore 
crucial for traffic monitoring, intelligent transportation systems, and the development of data-driven 
transportation policies. There is an immediate need for a more effective transportation system due to the 
growing number of automobiles and their detrimental effects, such as traffic and pollution. This need in turn 
shows the limitations of present technology [1], [2], [3]. 

The development of artificial intelligence (AI) and image processing-based vehicle classification systems 
has been the subject of numerous studies. With differing degrees of success, methods including Decision Tree, 
Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) have been employed. However, these 
approaches frequently still struggle with accuracy and gencomputability on complicated data [4], [5]. 
Specifically, the majority of earlier research has concentrated on classifying things that are still or that were 
photographed in optimal lighting. A neural network-based vehicle classification system with backpropagation, 
for instance, has been demonstrated in experiments to attain an accuracy of up to 87.5%; however, this system 
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has not been extensively evaluated in real-world scenarios with notable differences in background, 
illumination, and viewing angle. Furthermore, a number of other research [6], [7] focused more on the 
classification of non-visual data, making them less useful for image-based vehicle processing. A major research 
vacuum is created by the shortcomings of current approaches, particularly when it comes to handling dynamic 
real-world settings [8], [9]. Prior research on ANN-based car classification has mostly used small datasets 
gathered in controlled settings, which has led to models that are less reliable in real-world settings. By assessing 
ANN performance on a sizable dataset comprising a variety of photos with different lighting conditions, 
backgrounds, and viewing angles, our study fills this research vacuum. In order to lay the groundwork for the 
future development of intelligent transportation systems, the goal is to create a baseline assessment that 
accurately depicts actual traffic circumstances. 

The primary issue in this study is the lack of an image-based system for classifying vehicles that can 
function well in dynamic real-world environments [10], [11]. Reduced categorization accuracy is frequently 
the result of issues including visual differences in viewing angle, lighting intensity, and background [12]. 
Furthermore, there are still issues with the ANN model's generalization and training efficiency that have not 
been fully resolved [13]. 

The primary motivation behind this research is the requirement for a reliable and accurate vehicle 
categorization system in a variety of environmental situations [14], [15], [16]. A system that can accurately and 
instantly categorize cars is crucial given the growing use of automated traffic monitoring and intelligent 
transportation systems. A possible way to get over the aforementioned restrictions is to use ANN with 
backpropagation algorithms [17], [18]. Although this method has demonstrated efficacy in pattern recognition 
and image classification across a range of applications, more research is still needed to determine how well it 
applies to the categorization of vehicle types in light of changing environmental conditions [19], [20]. 

Although backpropagation artificial neural networks offer a lot of promise, an analysis of earlier research 
indicates that issues with generalization and training efficiency still exist. Activation function, learning rate, 
and neuron count are just a few of the variables that have been shown in numerous studies to significantly 
affect network effectiveness. To increase classification accuracy, feature extraction methods and data 
pretreatment are particularly crucial [21]. Therefore, to improve the performance of the vehicle classification 
system, this research will focus on refining the ANN architecture and its training parameters. 

The actual necessity for a vehicle categorization system that is accurate, adaptable, and applicable to a 
range of field settings [22] s what makes this research so urgent. This is particularly pertinent in light of the 
growing need for intelligent, technology-based transportation systems, particularly in Indonesia's large cities 
where traffic is complicated and vehicle quantities are high [23]. 

In light of this, the goal of this research is to create a backpropagation-based artificial neural network-
based vehicle type classification system that can function effectively in a range of environmental circumstances 
[24]. Vehicle image data collecting, data preprocessing, feature extraction, ANN architecture design, 
backpropagation algorithm training, and system performance assessment are some of the actions that will be 
performed in this study. It is anticipated that this study will significantly advance Indonesia's development of 
automated traffic monitoring and intelligent transportation systems [25]. 

Prior research has examined the application of Particle Swarm Optimization (PSO) and other optimized 
backpropagation neural network techniques. Nevertheless, the traditional BPNN approach is still used in this 
study without the use of an optimization technique. This method improves our understanding of BPNN's 
baseline performance in vehicle type categorization from visual images. The results of this study are expected 
to serve as the basis for the development of optimization techniques such as PSO or advanced feature extraction 
techniques. 
 
2. LITERATURE REVIEW 

. A successful car ownership prediction model employing PSO-BPNN (Particle Swarm Optimization-
Backpropagation Neural Network) was developed by Zhang et al. [26] PSO-BPNN can be used to overcome 
the limitations of conventional BPNN. The study's findings demonstrate a notable improvement in prediction 
accuracy and convergence speed when compared to alternative approaches. Future car ownership predictions 
can be examined using this model, particularly when considering sustainable development and urban 
transportation management. This study continues to use the traditional Backpropagation artificial neural 
network (BPNN) as the foundation for developing an image-based vehicle classification model, in contrast to 
Zhang's study, which use the PSO-BPNN optimization approach. As a result, this study acts as an initial 
assessment to gauge BPNN's fundamental performance prior to its development or comparison with more 
sophisticated strategies like PSO optimization techniques or sophisticated feature extraction methods. 

Tianang et al. [27] developed a motor fault diagnosis and fault-tolerant control system for electric vehicles 
with distributed drivetrains using a Backpropagation Neural Network (BPNN) for fault detection and Sliding 
Mode Control (SMC) for fault-tolerant control based on Direct Yaw Moment Control (DYC).In their vehicle 
model, they took into account several motor failure scenarios as short circuit, open circuit, and shutdown and 
classified fault types using BPNN. The findings demonstrated that the SMC-based fault-tolerant control 
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technique successfully preserved vehicle stability even when a motor failed, particularly when driving on slick 
or wet surfaces, and that the fault detection system was very accurate in recognizing motor conditions. 

The goal of Song et al.'s research [28] is to increase forecast accuracy and convergence speed, particularly 
when calculating the number of vehicles in China. Backpropagation Neural Networks (BPNN) tuned with PSO 
are used in this study. For the PSO-BPNN model to attain an error rate of 1.41 × 10⁻⁸ and an R2 value of 
0.96002, just three training iterations are needed. This model, which has a relative error between 0.023 and 
0.083, shows a strong correlation between the expected and actual values. According to these findings, this 
model outperforms both traditional BPNN and models that have been tuned using techniques like GA-BPNN 
and WOA-BPNN. 

By creating a more effective training technique and optimized network architecture, the study "Bi-Real 
Net: Enhancing the Performance of 1-Bit CNNs With Improved Representational Capability and Advanced 
Training Algorithms" by Bangyuan et al. [29] seeks to improve the performance of binary convolutional neural 
networks (CNNs). To address the accuracy and stability concerns of traditional binary CNNs, the authors of 
this study present a progressive training strategy, a customizable hyperbolic tangent activation function, and 
an enhanced binarization algorithm. Furthermore, they suggest altering the residual block structure to better fit 
binary operations. According to experimental results, this method approaches the performance of full-precision 
models while using less memory and executing fewer computations, successfully achieving an accuracy of up 
to 94.77% on the CIFAR-10 dataset. 

The study "Vehicle Classification Based On Backpropagation Neural Network with Metric Parameters 
and Eccentricity" by Mayatopani et al. [30] classifies several kinds of vehicles, including cars, buses, and 
trucks, using digital photographs. To make the car item stand out from the background, the image is cropped 
at the start of the procedure. The Backpropagation Neural Network approach, which has an accuracy rate of 
87.5%, is then used to classify the features that have been retrieved using metric parameters, including the 
vehicle's length, width, and eccentricity. During testing, this model demonstrates satisfactory results in 
identifying vehicle shapes while simply utilizing basic geometric cues. The researchers also offer some 
recommendations for future study enhancements, like utilizing deep learning techniques for improved 
outcomes, expanding the size of the training data, and adding extra variables like color and texture. This study 
classifies vehicle kinds using an Artificial Neural Network (ANN) and the backpropagation technique.  

 
3. RESEARCH METHODE 

16,185 car photos from eight different classes Hummer, Toyota Innova, Hyundai Creta, Suzuki Swift, 
Audi, Mahindra Scorpio, Rolls-Royce, and Tata Safari make up the dataset used in this study. The variety of 
vehicle kinds and real-world changes, including lighting, backgrounds, and viewing angles, led to the selection 
of the data, which was acquired from Roboflow Inc. It was split into 20% for testing (3,237 photos) and 80% 
for training (12,948 images) to guarantee accurate evaluation. To enhance model generalization, each image 
was downsized to 224 by 224 pixels, normalized to a range of 0–1, and enhanced using flipping and rotation. 
Implemented with Python 3.10 and the Keras library, the ANN model is composed of three layers: an input 
layer, a hidden layer with 64 sigmoid neurons, and an output layer with eight softmax neurons. The 
backpropagation technique was used for training with a batch size of 32, gradient descent optimization for 30 
epochs, and categorical crossentropy as the loss function. Figure 1 depicts the general workflow of the ANN 
training procedure. 

 
Figure 1. Research Diagram 
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The picture is a flowchart that shows the primary steps in the artificial neural network (Backpropagation 

Neural Network)-based vehicle classification process based on visual pictures. This graphic shows the order of 
the procedure from beginning to end and is composed of five major blocks that are stacked vertically and 
connected by gray arrows pointing downward. The process of acquiring or gathering vehicle photographs as 
input data is known as image acquisition, and it is the initial stage. The acquired images then proceed to the 
Image Segmentation phase, where they undergo processing to distinguish the vehicle object from the 
surrounding landscape. The process of extracting significant attributes or features from the vehicle object, such 
as dimensions (length, width) and eccentricity (degree of roundness of the object), which are helpful for the 
classification process, is then carried out. This is known as feature extraction with metric and eccentricity 
parameters. In order to classify automobiles into distinct categories, the collected features are fed into the ANN 
model in the fourth stage, Classification with Backpropagation Neural Network. At the evaluation stage, the 
classification results are finally examined in order to gauge system performance using metrics like recall, 
accuracy, and precision. The workflow for image processing for vehicle categorization is shown in this diagram 
in an organized, methodical, and understandable manner. 
 
Image Segmentation 

An essential stage in digital image processing is image segmentation, which separates the main object 
from the background or from other objects in the image. Finding the borders of regions that are comparable in 
shape, intensity, or pixel arrangement allows for this separation. A binary picture, or one with two values, is 
the end product of the segmentation process: the backdrop is represented by a value of 0 (black), and the desired 
object is represented by a value of 1 (white). Thresholding, a technique that establishes the threshold value to 
distinguish object pixels from background pixels, is the segmentation approach employed in this study. 
Selecting the appropriate threshold value is essential since it will dictate how well segmentation separates 
pertinent elements. Wati, Haviluddin, Puspitasari, Budiman, and Rahim claim that the thresholding technique 
works best when there is enough contrast between the background and the item.  
 
Feature Extraction with Metric and Eccentricity Parameters 

An essential step in a pattern recognition system is feature extraction, which seeks to identify distinctive 
characteristics of the objects under study. These characteristics are then used as input parameters in the 
classification stage to effectively distinguish one object from another. Shape features are among the most 
informative feature categories when it comes to image-based object detection. Two primary parameters—
metric and eccentricity—are used in this work to derive shape features. 

Metric parameters, which are frequently employed to characterize an object's roundness or compactness, 
are the ratio of an object's area to the square of its circumference. A perfect circle-like shape is indicated by 
metric values near 1, but a more complex or extended shape is indicated by smaller numbers. The metric can 
be expressed mathematically as [31]: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

 

Explanation: 
1. The number of correct positive predictions, or the cases that were forecasted as positive and are in fact 

positive, is known as TP (True Positives). 
2. The quantity of false positive predictions, or cases that were anticipated to be positive but turned out 

to be negative, is known as FP (False Positives). 
 
Therefore, precision quantifies the accuracy of the model's positive predictions. Precision levels go 

between 0 and 1, with a number nearer 1 denoting fewer false positive predictions. In situations like spam 
identification or disease diagnosis, when the repercussions of false positive predictions must be avoided, 
precision is particularly crucial. It's a formula that you wrote.When assessing a classification model's 
performance, recall (also known as sensitivity/true positive rate) is used. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Explanation: 
1. The number of accurate positive predictions, or the cases that were anticipated to be positive and turn 

out to be so, is known as TP (True Positives). 
2. The number of inaccurate negative predictions, or cases that were predicted as negative but turned out 

to be positive, is known as FN (False Negatives). 

(1) 

(2) 
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Therefore, precision quantifies the accuracy of the model's positive predictions. Precision levels go 
between 0 and 1, with a number nearer 1 denoting fewer false positive predictions. In situations like spam 
identification or disease diagnosis, when the repercussions of false positive predictions must be avoided, 
precision is particularly crucial. The F1-Score formula, a performance metric that aggregates Precision and 
Recall into a single score, is the one shown in the picture. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 	𝑅𝑒𝑐𝑎𝑙𝑙

 

 
One evaluation metric used to assess a classification model's performance is the F1-Score, which is 

particularly useful when the dataset is unbalanced or has a notably varied proportion of positive and negative 
examples. The F1-Score is defined by a formula that is the harmonic mean of Precision and Recall. The 
accuracy of the model's positive predictions is indicated by precision, or the proportion of projected positives 
that are actually true. Recall, on the other hand, measures the model's ability to identify each actual positive 
case. The F1-Score is particularly useful when a balance between precision and recall is needed because the 
two can occasionally conflict. In certain situations, a model may have a high precision but a low recall, or the 
opposite may be true. Because it offers a thorough understanding of the model's ability in identifying positive 
cases, the F1-Score thus becomes a significant metric. A model that performs well is indicated by a value near 
1, whereas a model that performs poorly is indicated by a value near 0. 
 
Classification with Backpropagation Artificial Neural Networks 

One popular supervised learning technique for classification tasks is the Artificial Neural Network 
(ANN) with the backpropagation algorithm. Three primary layer types—the input layer, the hidden layer, and 
the output layer—make up the fundamental architecture of an ANN. The input layer receives data that has been 
retrieved through the preprocessing and feature extraction procedures as a numerical representation of the item 
that needs to be categorized. 

ANN uses the backpropagation technique to modify the weights between neurons in each layer during 
the learning process. This approach uses an iterative process with two primary phases—feedforward and 
backward—to optimize the network weights. Input data is processed forward through the network until a 
projected output is produced during the feedforward phase. Additionally, the backward phase uses the gradient 
descent approach to update the network weights by calculating the error between the actual target and the 
anticipated output [32]. Figure 2 depicts the architecture of the neural network utilized in this investigation. 

  
Figure 2. Backpropagation Neural Network Architecture 

The three primary layers of an artificial neural network-the input layer, the hidden layer, and the output 
layer-are depicted in the diagram along with the backpropagation technique. Neurons x1, x2,..., xn in the Input 
Layer receive input data and are coupled to the neurons in the Hidden Layer by weights represented by vij. The 
impact of a single input on the buried neurons is represented by each link. Neurons z1, z2,..., zp in the Hidden 
Layer calculate activation values using the weighted sum of inputs and biases (shown by 1 with weights v0j). 
Weights wjk are then used to connect these hidden neurons to neurons in the Output Layer, resulting in outputs 

(3) 
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y1, y2,..., ym. Additionally, a bias (1 with weight w0k) is applied to each output neuron. In order to calculate 
and minimize the network error by changing the weights, the diagram additionally incorporates feedback 
pathways (backpropagation) from the output back to the hidden and input layers. The network's learning 
process is based on the arrows connecting neurons, which show the direction of signal flow during forward 
propagation and the incorrect signal during backpropagation. 

 
Evaluation 

An essential step in the creation cycle of a classification model is the evaluation phase, which tests and 
analyzes the developed model's performance. This step is to evaluate the generated algorithm's accuracy and 
efficacy in classifying previously unseen data (Borman et al., 2018). The assessment is conducted by 
contrasting the model's categorization outcomes with the test data's actual labels. 

Accuracy, a metric that characterizes how high the percentage of accurate predictions is in relation to 
all predictions made, is one of the primary metrics used to assess model performance. Knowing how closely 
the test results match the real values of the true class is made possible by accuracy. The accuracy is calculated 
using the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(%) = 	=
Number	of	Correct	Predictions
Total	Number	of	Predictions

> ∗ 100	%	 
 

The accuracy formula, which indicates how well the categorization model predicts outcomes, is shown 
in the picture. Divide the number of correct predictions by the total quantity of test data, then multiply the result 
by 100% to express the result as a percentage. Accuracy is calculated in this manner. The percentage of test 
data that is accurately categorized using the actual label is known as the "correct prediction." The model 
performs better at identifying the tested pattern or class when the accuracy value is higher. Due to its simplicity 
and ease of interpretation, this formula is frequently utilized as a fundamental assessment metric in 
classification systems based on artificial neural networks (ANNs) or other machine learning techniques. 

Other metrics, like as precision, recall, and F1-score, can be used to assess the model in addition to 
accuracy, especially if the distribution of data between classes is unbalanced. A comprehensive evaluation is 
required to ensure that the model can generalize well to previously unseen data in addition to performing well 
on the training data. Researchers can use this assessment to pinpoint the model's advantages and disadvantages 
and decide what needs to be improved, including changing the network architecture, fine-tuning parameters, 
or adding training data. 
 
4. RESULTS AND DISCUSSION 
3.1 Dataset Structure 

The dataset used in this study was obtained through Roboflow, Inc. and comprises 16,185 entries, each 
of which represents a distinct vehicle situation. The eight primary attributes of each entry are: Vehicle_Type 
(the type of vehicle used as the classification target label), Silhouette_Shape (the shape of the vehicle 
silhouette), Length (m) and Width (m) (the dimensions of the vehicle in meters), Number_of_Axles (the 
number of axles of the vehicle), License_Plate (information about whether or not the license plate is detected), 
and Color (the vehicle's predominant color). This dataset is appropriate for additional analysis because all of 
the data is fully documented and free of duplicate or missing values. 

Seven classes—Audi, Hyundai Creta, Mahindra Scorpio, Rolls-Royce, Suzuki Swift, Tata Safari, and 
Toyota Innova—make up the dataset's car types. Each class has a numerical label in the Vehicle_Type field 
for classification purposes. Numerical features like vehicle length and width are normalized using the 
MinMaxScaler method to be in the same range before to being used in model training. This prevents one 
characteristic from dominating another during the learning process. Studies pertaining to automatic vehicle 
recognition or image-based surveillance systems can make use of this dataset, which is intended to facilitate 
the creation of vehicle classification models based on visual and tabular information. 

An automated pipeline is used to preprocess the image data into structured tabular format (such as.csv) 
prior to modeling. This comprises: 

a. Using image processing to extract metadata from photos, such as color, size, and silhouette. 
b. A label that uses the filename or annotation to encode the type of vehicle. 
c. To guarantee balanced learning, normalize numerical characteristics (width and length) using the 

MinMaxScaler method 
16,185 photos make up the examined vehicle dataset, which has been divided into eight types based on 

the type of car. With 4,000 photos, or roughly 24.72% of the entire dataset, the Hummer is the car type with 
the most samples. The Hyundai Creta, with 2,500 photos (15.45%), and the Toyota Innova, with 3,200 photos 
(19.77%), come next. Subsequently, Audi contributed 1,800 photographs (11.2%) and Suzuki Swift contributed 
2,300 images (14.20%). Mahindra Scorpio had 1,200 photos (7.41%), Rolls-Royce had 685 photos (4.23%), 
and the Tata Safari had the fewest, with 500 photos (3.10%). 

(4) 
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An automated feature extraction pipeline, which attempts to turn visual information into numerical and 
categorical forms that can be studied by machine learning models, is used to convert image data into tabular 
data. In order to extract important visual data including the vehicle's dimensions (length and breadth), 
dominating color, and silhouette shape (Silhouette_Shape), each vehicle image is first examined using image 
processing techniques. Color analysis, object segmentation, and contour detection methods are used to obtain 
these features. Additionally, using object identification techniques or accessible annotations, properties like the 
number of axles (Number_of_Axles) and the existence of a license plate (License_Plate) are automatically 
detected. After being taken out of the filename or annotation, the Vehicle_Type label is subsequently 
numerically encoded (label encoding) for classification purposes. In order to prevent any one feature from 
controlling the model training process, numerical features like length and width are normalized using the 
MinMaxScaler method to make sure that all characteristics lie within the same range. A CSV (Comma-
Separated Values) file with structured rows of data representing individual car images with eight primary 
attributes is the end product of this method. Spreadsheet programs like Microsoft Excel may then open and 
examine this file, which can subsequently be used to train and assess classification models. Table 1 provides a 
summary of the dataset distribution used in this investigation. 

Table 1. Overview of the Dataset Structure 
Car Type Amount Percentage (%) 

Hummer 4.000 24.72 
Toyota Innova 3.200 19.77 
Hyundai Creta 2.500 15.45 
Suzuki Swift 2,300 14.20 
Audi 1.800 11.12 
Mahindra Scorpio 1.200 7.41 
Rolls Royce 685 4.23 
Tata Safari 500 3.10 

 
With certain classifications (such the Toyota Innova and Hummer) controlling the majority of the data 

and others having a significantly lower representation, this distribution demonstrates how unbalanced the 
dataset is. In order to prevent performance bias towards the majority class, this imbalance must be taken into 
account while training a classification model. 
 
3.2 Training and Testing Models 

During the model training phase, prepared training data is used to train artificial neural networks (ANNs) 
that use the backpropagation technique. To reduce prediction mistakes, the network weights are frequently 
changed during this process. Training parameters, such as the number of epochs, learning rate, and batch size, 
are set to optimize the model's performance. The dataset is randomly split into training and testing sets using 
an 80:20 ratio: 

a. Training Set: 12,948 images (80%) 
b. Testing Set: 3,237 images (20%) 

In order to preserve class distribution across both subgroups, stratified splitting is employed. This 
guarantees that every class is fairly represented during the testing and training stages. Table 2 provides a 
summary of the model's performance during each training and validation phase. 

Table 2. Model Performance per Epoch on Training and Testing Data. 
Accuracy, loss, or other metric values per epoch during training 

405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 1: val_accuracy improved from -inf to 1.00000, saving model to model_classification_mobil.keras 
405/405 ━━━━━━━━━━━━━━━━━━━━ 694s 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 2/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00       
Epoch 2: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 675s 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 3/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 3: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 563s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 4/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
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Accuracy, loss, or other metric values per epoch during training 

Epoch 4: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 547s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 5/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 5: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 604s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 6/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 6: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 587s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 7/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 7: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 628s 2s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 8/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 8: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 577s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 9/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00    
Epoch 9: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 608s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
Epoch 10/10 
405/405 ━━━━━━━━━━━━━━━━━━━━ 0s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 
Epoch 10: val_accuracy did not improve from 1.00000 
405/405 ━━━━━━━━━━━━━━━━━━━━ 580s 1s/step - accuracy: 1.0000 - loss: 0.0000e+00 - 
val_accuracy: 1.0000 - val_loss: 0.0000e+00 
 
Test Loss: 0.0000 
Test Accuracy: 1.0000  

The training and testing procedure's accuracy rose from 0.2182 to 0.8765. Table 4 above illustrates this. 
This demonstrates how the model's performance steadily improves with every training cycle. 

 
3.3 Model Evaluation 

The model's capacity to categorize various vehicle types is evaluated using the test data. Standard criteria 
including F1 score, recall, accuracy, and precision are used for evaluation. Finding out how well the model 
generalizes to previously unobserved data is the aim of this evaluation. The table below displays the results of 
the model performance evaluation. A model evaluation process uses a number of common criteria, including 
as accuracy, precision, recall, and F1-score, to try and automatically classify vehicle types from test picture 
data. Because it provides a comprehensive understanding of the model's effectiveness and reliability in 
detecting cars from previously unknown data, this evaluation is essential. In other words, this evaluation goes 
beyond simply assessing the model's performance on training data to emphasize its ability to generalize to new 
data, which is crucial for implementing a classification system in the real world. 

Accuracy, the most popular metric, shows the percentage of correct forecasts among all of the model's 
predictions. However, when it comes to multi-class classification, like autos, accuracy alone is not enough. 
Consequently, the accuracy metric is used to calculate the proportion of accurate forecasts among all positive 
predictions for each class. Recall, on the other hand, measures the percentage of a class's total real data that the 
model can accurately identify. The F1-score metric provides a balanced perspective of precision and recall by 
combining the two metrics. This is especially important when there is an uneven distribution of data across 
classes. It is evident from the evaluation findings that several classes, such the Audi, Tata Safari, and Toyota 
Innova, have exceptional classification ability, with numerous accurate predictions on the confusion matrix's 
diagonal. This demonstrates how well the model can identify these cars' visual traits. Many classes, including 
Swift and Rolls-Royce, still have problems with forecasts that are dispersed throughout several classes. This 
implies that either due to the small amount of data or visual similarities with other classes, the model is still 
having trouble identifying distinctive patterns from these classes. 
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Furthermore, the evaluation results indicate that a considerable percentage of misclassification cases 
originate from a substantial visual feature overlap in some vehicle classes, specifically the Audi and Toyota 
Innova. This behavior raises the possibility that the model's discriminative power is still insufficient to detect 
subtle differences in vehicle appearance. To address this issue, enhancement methods including class 
rebalancing, data supplementation, or the application of more advanced pretrained neural architectures—such 
VGGNet or Efficient Net-may be utilized to boost feature extraction capabilities. A comprehensive 
examination of categorization performance for each vehicle class is given in Table 3. 

Table 3. Confusion Matrix 
Class Accuracy Precision Recall F1-Score Support 

Audi 0.96 0.97 0.94 0.93 163 
Hummer 0.93 0.92 0.93 0.97 18 
Hyundai Creta 0.94 0.93 0.93 0.94 54 
Mahindra Scorpio 0.97 0.96 0.94 0.94 63 
Rolls Royce 0.96 0.95 0.97 0.92 62 
Swift 0.97 0.95 0.95 0.96 85 
Tata Safari 0.95 0.96 0.96 0.95 89 
Toyota Innova 0.98 0.94 0.95 0.94 155 

 
In conclusion, assessing the car classification model using accuracy, precision, recall, and F1-score may 

provide a useful understanding of how well it performed on the test dataset. While the overall performance is 
satisfactory, the report also points out a number of areas that want improvement. Using more complex model 
architectures and enhancing data quality can significantly improve classification accuracy. These 
enhancements increase the system's likelihood of being applied in practical applications such as intelligent 
parking systems, traffic monitoring, and fleet management. A visual representation of the total classification 
results is shown in Figure 3, which shows the confusion matrix for the vehicle classification model. 

 
Figure 3. Confusion matrix of the vehicle classification model 

 
The graphic shows the confusion matrix of the classification model used to categorize vehicle types from 

test data. This matrix displays the proportion of correct and incorrect forecasts for each class. While rows show 
the actual labels, columns show the model's predictions. Accurate predictions are represented by high numbers 
on the primary diagonal, which runs from top left to bottom right; misclassifications are represented by numbers 
outside the diagonal. The visualization results make it clear that the model does a respectable job of recognizing 
specific classes. For example, the Toyota Innova class has the highest diagonal value (78), indicating that most 
of its samples were successfully classified as such. In a similar vein, Tata Safari had 57 accurate predictions, 
compared to 30 for Mahindra Scorpio and Swift. This demonstrates how well the model can recognize these 
cars' distinctive visual traits. 

Some classes, on the other hand, are frequently misclassified or have poor accuracy. One of these is the 
Hummer class, which is frequently misclassified into other classes like the Audi and Hyundai Creta despite 
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having only three accurate forecasts. The same is true for Rolls-Royce, where just 11 out of all the forecasts 
were accurate, with the remaining projections being dispersed throughout different classes. This demonstrates 
that the model struggles to differentiate luxury car features like those of Rolls-Royce from those of other classes 
that could share visual traits. Prediction imbalance is particularly evident in the Audi class, which is frequently 
misclassified as a Mahindra Scorpio or Swift and a Toyota Innova (31 times) while having 68 accurate 
predictions. These mistakes can suggest that the Audi model is frequently confused by the visual characteristics 
of other cars that share its exquisite style or shape. This can be enhanced by methods like data augmentation, 
expanding the sample size for minority classes, or enhancing feature extraction. 

The model's overall effectiveness in categorizing the majority of vehicles is demonstrated by the 
confusion matrix, particularly for classes with more data or highly distinguishable visual characteristics. 
However, classes like Hummer and Rolls Royce that are frequently mistaken require major changes. Retraining 
the model with a focus on problematic classes, testing with more sophisticated models, or modifying the 
network architecture to be more sensitive to visual characteristics that differentiate between vehicles are some 
potential next steps With high precision, recall, and F1-scores across the majority of vehicle classes, the ANN 
model using the conventional backpropagation technique showed excellent performance, with an overall 
accuracy of 100% on both the training and testing datasets. The findings of this study show a notable 
improvement in classification performance when compared to other research, such as Zhang et al. [26], who 
claimed 85% accuracy using PSO-BPNN, and Tianang et al. [27], who reached 88% accuracy for electric 
vehicle problem detection. These results imply that, given adequate and well-structured data, a regular 
backpropagation ANN is still a competitive method for image-based vehicle classification tasks. The findings 
have significant ramifications for real-world applications where precise and effective vehicle recognition is 
essential, such as autonomous vehicle monitoring, traffic surveillance, and intelligent parking systems. To 
further improve robustness and manage more complicated visual situations, future research might concentrate 
on incorporating more sophisticated architectures like CNN or YOLO.  
 
5. CONCLUSION. 

In this study, a vehicle classification system based on digital photographs was effectively constructed 
using artificial neural networks (ANN) and the backpropagation technique. This method recognizes and 
categorizes seven different car kinds based on their shape, size, color, number of axles, and license plate 
information. The model was trained and assessed using standard performance metrics such as F1 score, recall, 
accuracy, and precision using a dataset from Roboflow. The training results showed that throughout the 
iteration phase, the accuracy rose by 100%. 

This study found that although most vehicle classifications were classified with high accuracy, some 
vehicles were misclassified within a class because of their visual similarities to other classes. This implies that 
even if the model did a great job overall, it may still be improved, particularly when it comes to managing 
classes with similar visual characteristics. Regularization and the creation of deep learning architectures like 
Convolutional Neural Networks (CNNs) are two recommended methods to boost performance. The results of 
this study demonstrate baseline performance without algorithmic optimization because it still employs a 
traditional backpropagation-based ANN model. In order to create a more effective and ideal vehicle 
classification model, it is advised that future research compare the traditional ANN model with optimization 
techniques like PSO-BPNN. 

All things considered, this study makes a substantial contribution to the creation of a vehicle 
classification system that will aid Indonesia's adoption of automated traffic monitoring and intelligent 
transportation systems. It has been demonstrated that the final system is effective, precise, and resilient enough 
to manage changes in visual data from automobiles. This technology could be widely used in real-world 
settings, like automated parking systems, road monitoring, and data-based transportation policy, with additional 
development and data enrichment. 
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