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 Batik patterns are a reference for the classification of batik origin and the 

culture depicted in it. Several studies have raised the classification of batik 

patterns but have gaps to be developed in terms of classification accuracy. This 

research investigates the development of model deep convolutional 
autoencoders to enhance the classification of digital batik images. The dataset 

used was sourced from Kaggle. The autoencoder was employed to enrich the 

image data prior to convolutional processing. By forcing the autoencoder to 

learn a lower-dimensional latent representation that captures the most salient 
features of the batik patterns. The performance of this enhanced model was 

compared against a standard convolutional neural network (CNN) without the 

autoencoder. Experimental results demonstrate that the incorporation of the 

autoencoder significantly improved the classification accuracy, achieves 99% 
accuracy on test data with a total of 30% of 680 images data, 99.5% accuracy 

on training data with a total of 70% of 680 images data, loss value of 3.4% 

from data testing, and loss value of 3,8% from data training. This study 

highlights the potential of deep convolutional autoencoders as a powerful tool 
for augmenting image data and improving the performance of deep learning 

models in the context of batik image classification. 
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1. INTRODUCTION 

Indonesia boasts a rich tapestry of cultural and artistic heritage, with batik being a prime example [1]. 

As an intangible cultural heritage of Indonesia, batik holds significant value in representing the identity and 

philosophy of a region [2]. West Kalimantan, with its diverse ethnicities and cultures, produces a variety of 

unique and meaningful batik motifs [3]. These motifs, such as Corak Insang, Ikat Celup, Megamendung, and 

indigenous Dayak motifs, reflect the interaction between humans and the environment [4]. The spiritual values 

cherished by society also give batik a distinctive character in Indonesia [5]. 

The digital world presents opportunities to develop new technologies for studying and preserving 

cultural heritage, including batik [6]. Studies on batik pattern recognition have been conducted and have 

contributed to the development of pattern recognition technology [7]. The utilization of digital image 

technology, particularly the development of Convolutional Neural Network (CNN) models, has the potential 

to advance these efforts [8]. CNNs operate by mimicking the visual cortex of the human brain, allowing them 

to "see" and "understand" patterns in digital images [9]. Inspired by the human neural system, CNNs have 

demonstrated their capabilities in various pattern recognition tasks, including image classification [10]. Several 

studies have provided good results on the accuracy of batik image classification, but the accuracy value can 

still be improved to avoid data classification errors when tested with new data by developing a new CNN 

model. 
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The implementation of CNNs in the context of batik pattern recognition can be directed towards 

automatic identification and classification of batik motifs [11]. Developing CNN model implementations 

enables the construction of a comprehensive, structured batik motif database with high accuracy [12]. This 

model development can be achieved by applying Autoencoders to the convolutional process of CNN [13]. 

Autoencoders serve as a reference for improving model learning outcomes to enhance pattern learning [14]. 

The objective of this research is to develop a CNN model with Autoencoder, resulting in a Deep 

Convolutional Autoencoder (DCAE), to improve the accuracy [15] of batik pattern classification. The 

Autoencoder will be applied to produce sharper image processing results [16][17] to avoid training and testing 

errors during the convolution process [18]. While Autoencoders have been applied in various studies, their 

application to batik pattern learning is novel. 

 

2. RESEARCH METHOD 

The methodology employed in this research is the Deep Convolutional Autoencoder (DCAE), as 

illustrated in Figure 1. The DCAE is a type of artificial neural network that combines two architectures for 

image data processing: convolutional neural networks (CNNs) and autoencoders [19]. DCAE is designed to 

automatically learn efficient feature representations from input data, typically images, through an encoding and 

decoding process [20]. It is utilized for unsupervised learning, dimensionality reduction, and image data 

reconstruction [21]. The DCAE aims to learn an efficient latent representation (code) of the input data, which 

can subsequently be used to reconstruct the original data or for other tasks such as denoising [22]. 

 

 
Figure 1. Diagram of DCAE Model Design 

 

Figure 1 illustrates the process of a Deep Convolutional Autoencoder (DCAE). The DCAE is a neural 

network architecture designed to learn efficient representations of input data, typically images, through an 

encoding and decoding process. 

1. Input Image: The original image that serves as the input to the DCAE.  

2. Conv 1, Conv 2, Conv 3: These are convolutional layers within the encoder that extract features from 

the input image. As the network goes deeper (Conv 2, Conv 3), the extracted features become more 

abstract and hierarchical, capturing higher-level semantic information [23].  

3. Latent Representation: This is a compressed representation of the input image, often referred to as a 

"code." It is the bottleneck of the autoencoder and contains the most essential information extracted 

from the input. The latent representation can be used for various tasks, such as dimensionality 

reduction, feature extraction, and denoising [24][25].  

4. Deconv 3, Deconv 2, Deconv 1: These are transposed convolutional layers within the decoder that 

reconstruct the image from the latent representation. They reverse the process of the encoder, 

gradually building up a higher-resolution image from the learned features [23].  

5. Output Image: The reconstructed image generated by the DCAE. Ideally, it should be as similar as 

possible to the original input image. 

The research objects were obtained from the Kaggle dataset [4], consisting of 680 batik image data. 

These image data were categorized into several classes as presented in Table 1. 
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Table 1. Digital Image Objects for Dataset 

No Classes Amount 

1 Batik Corak Insang 170 Images 

2 Batik Dayak  170 Images 

3 Batik Megamendung 170 Images 

4 Batik Ikat Celup 170 Images 

Total 680 Images 

 

The image dataset was divided into training and testing subsets, with 70% of the data allocated for 

data training and 30% for data testing.  

 

Table 2. Dataset Division into Training Data and Testing Data 

No Classes Amount 

1 Data Training (70%) 476 Images 

2 Data Testing (30%) 204 Images 

 

All images were preprocessed by resizing them to a standardized dimension of 224x224 pixels. This 

resolution was chosen to balance computational efficiency and the preservation of essential pattern details. 

 

3. RESULTS AND ANALYSIS 

The research commenced with a dataset of batik images procured from Kaggle [4]. To augment the 

training data and improve the model's generalization capabilities, horizontal and vertical flips were applied to 

the images. This data augmentation technique introduced additional variations in the training set, enabling the 

model to learn more robust features. Subsequently, an autoencoder model was constructed as detailed in Table 

3. The autoencoder's architecture was designed to efficiently extract latent representations from the input 

images. The encoder component of the autoencoder consisted of convolutional layers that progressively down 

sampled the input images, while the decoder component sampled the latent representation to reconstruct the 

original image. This architecture allowed the model to learn a compressed representation of the batik patterns, 

capturing the underlying semantic information. 

 

Table 3. Summary of Autoencoder Model Design 

No Layer (type) Output Shape Param # 

1 input_layer (InputLayer) (None, 100, 100, 3) 0 

2 conv2d (Conv2D) (None, 100, 100, 12) 896 

3 max_pooling2d (MaxPooling2D) (None, 50, 50, 32) 0 

4 conv2d_1 (Conv2D) (None, 50, 50, 64) 18.496 

5 max_pooling2d_1 (MaxPooling2D) (None, 25, 25, 64) 0 

6 conv2d_2 (Conv2D) (None, 25, 25, 128) 73.856 

7 max_pooling2d_2 (MaxPooling2D) (None, 13, 13, 128) 0 

8 conv2d_3 (Conv2D) (None, 13, 13, 128) 147.584 

9 up_sampling2d (UpSampling2D) (None, 26, 26, 128) 0 

10 conv2d_4 (Conv2D) (None, 26, 26, 64) 73.792 

11 up_sampling2d_1 (UpSampling2D) (None, 52, 52, 64) 0 

12 conv2d_5 (Conv2D) (None, 50, 50, 32) 18.464 

13 up_sampling2d_2 (UpSampling2D) (None, 100, 100, 32) 0 

14 conv2d_6 (Conv2D) (None, 100, 100, 3) 867 

 

Table 3 presents a detailed overview of the proposed autoencoder architecture. The encoder 

component, depicted from number 1 to 4 in table 3, comprises a series of convolutional layers with decreasing 

spatial dimensions and increasing numbers of filters. This progressive down sampling captures hierarchical 

features from the input image, culminating in a latent representation. Conversely, the decoder, highlighted from 

number 5 to 14 in table 3, mirrors the encoder's structure but in reverse, gradually reconstructing the image 

from the latent code. The decoder employs transposed convolutions to up sample the feature maps, enabling 

the generation of an output image with the same dimensions as the input. 

 

3.1.  Training the Model 

The autoencoder model was trained on the augmented dataset using a suitable loss function, such as 

mean squared error (MSE), to minimize the reconstruction error between the input and output images. During 

training, the model learned to encode the input images into a lower-dimensional latent space and then decode 

this latent representation to reconstruct the original image. The latent representations captured the most salient 

features of the batik patterns, providing a compact and informative representation of the data. Once the 



            

ISSN: 2252-3839 (Print)-2549 2403 (Online) 

126  COMPILER, Vol. 13, No. 2, November 2024 

autoencoder was trained, the convolutional features extracted by the encoder were used as input to a subsequent 

convolutional neural network (CNN) for the classification task and train the classification (Figure 2). 

 

 
Figure 2. Code for Training DCAE Design Model  

The convolutional features obtained from the autoencoder were fed into a CNN to perform the final 

classification task. The CNN was designed with multiple convolutional layers, followed by pooling layers to 

progressively reduce the spatial dimensions of the feature maps. The output of the final convolutional layer 

was flattened and fed into a fully connected layer, which produced the final classification probabilities. The 

CNN was trained using a categorical cross-entropy loss function to optimize the model's parameters. The 

training process involved iteratively updating the model's weights to minimize the classification error on the 

training set. To evaluate the performance of the model, it was tested on a held-out test set, and the classification 

accuracy was computed. 

 

 
Figure 3. Results of model training 

 

Figure 3 describes the DCAE was trained over 200 epochs, resulting in a converged loss and validation 

loss of 2.8%. The low loss values suggest that the model has successfully learned to reconstruct the input 

images with high fidelity. This indicates that the latent space learned by the autoencoder captures the underlying 

structure and variations within the batik dataset. 

 

3.2.  Combination of DCAE and CNN 

After the training of the DCAE, the latent representations obtained from the encoder were utilized as 

input to a convolutional neural network (CNN). This model is a development from standard CNN to learn high-

level features on the DCAE latent space, which are more discriminative for the classification task. CNN was 

trained for 200 epochs using a suitable loss function, such as categorical cross-entropy, to optimize the 

classification performance. A summary of the classifier model's architecture and performance metrics is 

provided in Table 3, showcasing the model's ability to accurately classify batik patterns. 

 

Table 4. Summary of CNN Model 

No Layer (type) Output Shape Param # 

1 input_layer_3 (InputLayer) (None, 13, 13, 128) 0 

2 flatten_2 (Flatten) (None, 21.632) 0 

3 dense_6 (Dense) (None, 128) 2.769.024 

4 dense_7 (Dense) (None, 4) 516 

 

Table 3 presents a concise overview of the classifier model, including its key components and 

performance evaluation. As shown in the table, the model achieved a high classification accuracy on the test 

set. 

 

3.3.  Training and Testing Process 

The combination of DCAE and CNN for image classification shows excellent performance as shown 

in figure 4, attaining a validation accuracy of 99,5% for testing with a corresponding loss of 3,8% and for 

training make 99% accuracy and loss 3,4% in figure 5.  

 

 
Figure 4. Combined model classification results for training 
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Figure 5. Combined model classification results for testing 

 

These results indicate that the model has effectively learned to discriminate between different classes 

of batik patterns. This result can also be seen from the plot diagram of figure 6 for training and figure 7 for 

testing. 

 

 
Figure 6. Training Data Results Diagram 

 

Figure 6 presents the learning curves obtained by training both the DCAE and CNN models. The 

consistently high accuracy achieved by both models across multiple epochs indicates their robust ability to 

learn intricate patterns within the training data. This suggests that these models have the potential to generalize 

well to unseen data and perform accurate pattern recognition tasks. 

 

 
Figure 7. Testing Data Results Diagram 

The test curve in figure 7 shows strong and stable convergence, comparable to the monotonically 

decreasing loss training in figure 8. This indicates that the model has learned a generalizable representation of 

the data. 

 
Figure 8. Loss Training Results Diagram 

 

The training loss plot in Figure 8 demonstrates the stability of the combined DCAE and CNN model 

during training. The steady decline in the loss value suggests that the model is converging to a good solution 
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and is not overfitting to the training data. This indicates the robustness of the combined model and its potential 

for generalization to unseen data. 

 
Figure 9. Loss Testing Results Diagram 

 

Figure 9 describes the model achieving a final variance loss of 3.8% after more than 200 epochs. The 

loss function showed a steady decrease during training, indicating that the model did not suffer from data 

training failure and was able to effectively learn the underlying patterns in the data. 

 

3.4.  Evaluate the Model with Confusion Matrix 

Evaluation of the proposed model uses a confusion matrix as shown in Figure 10 and Figure 11. The 

figure shows the model's ability to learn effectively and generalize well to unseen data, with minimal signs of 

overfitting. 

 

 
Figure 10. Confusion Matrix Model Training Results 

 
Figure 11. Confusion Matrix Model Testing Results 

The confusion matrix in figure 10 and figure 11 provides a detailed breakdown of the classifier's 

performance from data training (Figure 10) and data testing (Figure 11). The model achieved an overall 

accuracy of 99,5%, f1-score 99,5% and recall with 99,5%, indicating high performance in classifying batik 
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patterns. In particular, the classifier performs very well in distinguishing between each class in the batik images, 

with only a few misclassifications. Nevertheless, the overall results demonstrate the effectiveness of the 

proposed DCAE model in classifying batik patterns. 

 

3.4.  Comparison with Previous Research 

This section presents a comparative analysis of the accuracy achieved by the proposed DCAE model 

and pre-existing CNN models for batik pattern recognition with same dataset [4][8][12]. By directly comparing 

the classification performance of these models, this research aims to assess the effectiveness of the DCAE 

architecture in capturing features of batik patterns and outperforming traditional CNN approaches. The DCAE 

model, designed to learn deep latent representations of batik patterns, is compared with conventional CNN as 

shown in Table 4. 

 

Table 5. Comparison of Previous Research Results 

No Research Accuracy 

1 

2 

3 

4 

Implementasi CNN with Transfer Learning [4] 

CNN with Transfer Learning + VGG [8] 

CNN back & forward propagation [12] 

DCAE Model (This research) 

70 % 

91,23% 

91,24% 

99% 

 
Comparison from table 4 to investigate the impact of different CNN architectures on batik pattern 

recognition. This study presents a novel CNN architecture for batik pattern recognition, achieving a state-of-

the-art accuracy of 99.5%. This model significantly outperforms existing approaches, such as the baseline CNN 

(70% accuracy), CNN with VGG (91.23% accuracy), and CNN with back and forward propagation (91.24%).  

The superior performance of this new model can be attributed to its ability to learn a deep latent 

representation of batik patterns while preserving the dimensionality of the input data. By using an autoencoder 

architecture, the DCAE can effectively capture the spatial relationships between pixels, enabling it to learn 

more informative features compared to traditional CNNs. This, coupled with the model's ability to reconstruct 

the input images, contributes to its improved classification performance. 

 

4. CONCLUSION 

This study introduces a novel CNN architecture, DCAE, for batik pattern recognition. The proposed 

model achieves value accuracy of 99.5% from data training with 70% of 680 images data and 99% from data 

testing with 30% of 680 images data on the batik pattern recognition task. The new model significantly 

outperforms previous studies that have used various CNN architectures for this task. The superior performance 

of DCAE can be attributed to its unique architecture. Utilizing an autoencoder, DCAE learns a deep latent 

representation of the input data. This latent representation effectively captures the intricate details and 

variations in the batik patterns, allowing the model to make more accurate classifications. In addition, the 

autoencoder component enables DCAE to denoise the input images, reducing the impact of noise and artifacts 

that can hinder classification performance. Unlike traditional CNNs, which primarily focus on extracting 

features from input images, DCAE also learns to reconstruct the input data. This reconstruction process helps 

the model learn more robust and generalizable features, thereby improving its ability to classify unseen data.  

Future research could focus on enhancing the DCAE model by delving deeper into data validation. 

Specifically, efforts should be directed towards achieving lower loss values and expanding the dataset to 

include more varied and complex patterns.[26], [27] 
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