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 Acne vulgaris is a common dermatological condition that significantly 

impacts psychosocial well-being, particularly among adolescents and young 

adults. Accurate identification of acne lesion types is crucial for effective 

treatment planning, yet manual assessment by dermatologists is subjective 

and resource-intensive. This study proposes a Convolutional Neural 

Network (CNN)-based approach using EfficientNetV2-S with transfer 

learning and data augmentation to perform multi-class classification of five 

acne lesion types: blackheads, whiteheads, papules, pustules, and cysts. The 

model was trained and evaluated on 4,673 annotated facial images, achieving 

an accuracy of 96.66%, outperforming conventional lightweight CNNs and 

achieving comparable results to heavier ensemble architectures. Statistical 

validation using p-values and effect sizes confirms the model’s robustness. 

The scientific contribution of this research lies in the integration of 

EfficientNetV2-S with a customized classification head optimized for multi-

class acne recognition—an area underexplored in dermatological AI 

research. Unlike previous works focusing on binary classification or 

ensemble models, our approach offers a lightweight, accurate, and scalable 

solution for real-world teledermatology, thus establishing a novel 

benchmark in multi-class acne classification. 
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1. INTRODUCTION 

Acne vulgaris is one of the most prevalent dermatological conditions worldwide, affecting up to 85% 

of adolescents and young adults [1]. Although not life-threatening, acne can cause significant psychosocial 

effects including low self-esteem, anxiety, and social withdrawal [2][3]. In Indonesia, the condition is especially 

common among university students due to hormonal imbalance, dietary patterns, and psychological stress [4]. 

Early and accurate identification of acne types is essential for preventing complications such as post-

inflammatory hyperpigmentation or scarring [5]. However, limited access to dermatologists, particularly in 

remote and underserved regions, hinders timely diagnosis and personalized treatment [6]. 

With recent advances in artificial intelligence, particularly Convolutional Neural Networks (CNNs), 

automated dermatological image classification has shown significant promise in clinical and telemedicine 

contexts [7]. CNN-based deep learning architectures such as ResNet, MobileNet, and EfficientNet have achieved 

outstanding performance in the classification of various skin disorders including melanoma, eczema, and 

psoriasis [8]–[10]. However, in acne classification, most existing studies have focused on binary or ternary 

classification, distinguishing only between acne and non-acne [11][12], or between mild and severe acne [13]. 

This limited scope fails to address the clinical necessity for multi-class recognition of distinct lesion types such 

as blackheads (open comedones), whiteheads (closed comedones), papules, pustules, and cysts, which are crucial 

for determining treatment plans [14]. 

Several recent studies have attempted to address these challenges. Gao et al. [15] proposed AcneDGNet, 

an ensemble deep learning model for lesion detection and severity grading, achieving 94.6% accuracy but 

requiring high computational cost. Chaturvedi et al. [16] introduced an EfficientNet-based ensemble architecture 

for skin disease classification, reaching 95.2% accuracy, but without acne lesion-specific analysis. Faudyta and 

Sinaga [17] applied MobileNet to acne classification with an accuracy of 89.1%, limited to three categories. 

Arifianto and Muhimmah [18] implemented a basic CNN in a web-based acne detector, reporting 92.85% 

accuracy, yet lacking lesion-type granularity. Gessert et al. [19] combined EfficientNet backbones with metadata 
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inputs to classify skin lesions, but excluded acne-specific datasets. More advanced approaches, such as Spatial 

Aware Double Head (SADH) [20], Decoupled Sequential Detection Head (DSDH) [21], and transformer-based 

SkinM2Former [22], have improved lesion detection and classification but remain computationally heavy and 

unsuitable for lightweight deployment. 

To the best of our knowledge, few studies have investigated single-model, multi-class acne 

classification using compound-scaled CNNs such as EfficientNetV2-S. This study introduces a novel approach 

by combining a customized classification head, transfer learning, and extensive augmentation, specifically 

tailored to address the complexity and variability of dermatological images. 

The aim of this study is to develop and evaluate a multi-class acne classification model using 

EfficientNetV2-S, optimized to deliver high accuracy while maintaining computational efficiency suitable for 

real-world teledermatology applications. The remainder of this paper is structured as follows: Section 2 details 

the methodology, Section 3 presents the results and discussion, and Section 4 provides the conclusion and future 

research directions. 

2. RESEARCH METHODS 

This study employed a quantitative experimental approach using facial acne image data, which were 

classified into five categories through a Convolutional Neural Network (CNN) model based on the 

EfficientNetV2-S architecture. To ensure the reliability and validity of the findings, the research was conducted 

through a structured and systematic workflow. The stages included data acquisition, preprocessing, image 

augmentation, dataset splitting, model training using EfficientNetV2-S, and performance evaluation using 

metrics such as accuracy, precision, recall, and F1-score. The complete research flow is illustrated in Figure 1. 

 

 

Figure 1. The research workflow 

2.1 Data Collection 

The dataset used in this study comprises a total of 4,673 facial images exhibiting various types of acne, 

categorized into five clinically recognized classes: blackheads, whiteheads, papules, pustules, and cysts. This 

dataset was obtained from a public repository on Kaggle, originally sourced from DermNet, and was pre-

processed to support research in multi-class acne classification using digital facial images. The dataset is publicly 

available at https://www.kaggle.com/datasets/shubhamgoel27/dermnet/data. and was last accessed on July 3, 

2025. It has also been utilized in previous deep learning studies involving architectures such as ResNet and 

MobileNet, enabling direct comparative evaluation with the proposed EfficientNetV2-S model. The dataset 

reflects real-world variability in lighting, background, and skin tones, with all images labeled by certified 

dermatology experts. The dataset is divided into three subsets: 2,834 images for training, 921 for validation, and 

918 for testing. Sample images from each class are shown in Figure 2. 

 

 

 

 

https://www.kaggle.com/datasets/shubhamgoel27/dermnet/data
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Table 1. Dataset distribution 

Detail Dataset 
 Data  

Training Validation Test 

Facial acne dataset 

Total images: 4,673 

Class: Blackheads, Whiteheads, 

Papules, Pustules, Cysts 

2,834 921 918 

 

    

 

    

Figure 2. Sample images from the research dataset 

2.2 Data Preprocessing 

Data preprocessing is a critical step in the deep learning workflow, particularly for medical image 

classification, to enhance input consistency, improve model learnability, and reduce noise from imaging 

variability. In dermatological datasets, differences in resolution, illumination, and texture can degrade feature 

extraction and hinder convergence. To address these issues, this study employed a three-stage preprocessing 

pipeline consisting of image resizing, pixel value normalization, and targeted data augmentation. These 

procedures adhere to best practices in skin lesion analysis using convolutional neural networks, ensuring that the 

model receives standardized, scale-invariant, and diverse input during training [6][7][8]. 

2.2.1 Image Resizing 

Convolutional Neural Network (CNN) models, such as the EfficientNetV2-S architecture applied in 

this study, require input images with uniform spatial dimensions to ensure consistent feature extraction and stable 

model performance. The acne image dataset used in this study contained images with varying resolutions, 

necessitating a standardization process before training. All images were resized to 224×224 pixels, a dimension 

widely used in prior applications of EfficientNet-based models for dermatological classification tasks [9]. This 

resizing approach is consistent with preprocessing standards found in both international and local studies 

involving skin condition recognition using CNNs, enabling efficient batch processing and architectural 

compatibility [8][9]. 
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2.2.2 Pixel Normalization 

The next step in the preprocessing pipeline is normalization, which adjusts the scale of pixel intensity 

values to stabilize and accelerate the model’s learning process. Most digital images encode pixel values in the 

range of 0 to 255; using these raw values in training can cause uneven gradients and slow convergence. To 

address this, each pixel was rescaled to a standardized floating-point range between 0 and 1 by dividing by 255.0, 

a method widely adopted in CNN-based image classification workflows [10]. This normalization ensures 

proportional contribution of each pixel during training and reduces the bias toward high-intensity features. 

Consistent normalization across the dataset supports stable backpropagation and learning dynamics in medical 

imaging tasks [11], and has been shown to improve generalization performance, especially in limited clinical 

datasets [12]. 

2.2.3 Data Augmentation 

Data scarcity is a common challenge in deep learning modeling, particularly in medical image 

classification, and often results in overfitting when models struggle to generalize beyond the training samples 

[13]. To address this issue, data augmentation techniques were applied to artificially expand the training dataset 

and introduce diversity. Augmentation was strictly limited to the training set to prevent data leakage into the 

validation and test sets—an essential methodological standard in medical image modeling [15]. All augmentation 

operations were performed dynamically (on-the-fly) during training, following practices adopted in previous 

acne classification studies to improve robustness [5]. The augmentation strategy included random rotation, zoom, 

horizontal flipping, and brightness adjustments to simulate real-world variability in pose, scale, orientation, and 

lighting. The applied transformations included: 

1. Random Rotation: Images were randomly rotated within a range of -15 to +15 degrees. This simulates 

capturing images from slightly different viewing angles. 

2. Random Zoom: Images were randomly zoomed in by up to 20%. This transformation helps the model 

recognize objects at various scales or distances. 

3. Horizontal Flip: Images were randomly flipped along the horizontal axis. For dermatological images, this is 

a logical transformation as acne can appear on either side of the face, thus creating realistic data variations. 

4. Brightness Adjustment: The brightness of the images was randomly modified, with a brightness factor 

ranging from 0.8 (darker) to 1.2 (brighter). This makes the model more tolerant to different lighting 

conditions during image capture. 

The application of augmentation techniques such as rotation, flipping, and brightness adjustment has been widely 

acknowledged as an effective approach to improving model generalization, especially in dermatological image 

classification [4][16]. These transformations expose the model to slightly altered versions of the same image in 

each training epoch, allowing it to better learn discriminative features under diverse imaging conditions. By 

virtually enlarging the dataset, augmentation encourages the network to extract representations that are invariant 

to changes in position, scale, orientation, and lighting. Consequently, the model becomes more robust to unseen 

data and less prone to overfitting [11]. 

2.3 Model Architecture 

This study adopted the EfficientNetV2-S architecture for multi-class acne classification. 

EfficientNetV2-S is a convolutional neural network (CNN) that utilizes a compound scaling strategy, optimizing 

network depth, width, and resolution simultaneously to improve both accuracy and computational efficiency. It 

also integrated a progressive learning approach that gradually increases input resolution and regularization during 

training, promoting faster convergence and stronger generalization. These architectural innovations make 

EfficientNetV2-S well-suited for dermatological classification tasks that involve high intra-class variability, such 

as distinguishing between multiple acne types [17][18]. The model was initialized with ImageNet-pretrained 

weights to take advantage of transferable visual features, then fully fine-tuned on a custom-annotated acne 

dataset to adapt it to the target domain. 

To tailor the model for five-class acne classification, the original classification head was replaced with 

a custom sequence comprising a GlobalAveragePooling2D layer followed by two Dense layers with 512 and 

128 units. Each Dense layer was regularized with BatchNormalization and Dropout, using dropout rates of 0.4 

and 0.3 to enhance training stability and mitigate overfitting. The final output layer employed a softmax 

activation function with five neurons, corresponding to the target acne categories: blackheads, whiteheads, 

papules, pustules, and cysts. This modular design balances the strength of a pretrained feature extractor with a 

task-specific classifier, aligning with best practices in CNN-based medical image modeling [10][11]. The 

complete architecture of the proposed model is illustrated in Figure 3. 
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Figure 3. Architecture of the proposed EfficientNetV2-S model 

 

2.4 Experimental Setup 

All experiments were conducted on a dedicated machine with the specifications listed in Table 2. 

Table 2. Hardware and software specifications 

Component Specification 

GPU NVIDIA Tesla T4 (15.3 GB VRAM) 

Driver GPU 550.54.15 

CUDA 12.4 

RAM 13 GB 

Python 3.11.13 

TensorFlow 2.18.0 

Keras 3.8.0 

 

2.5 Model Training and Optimization 

The model training process was designed to balance performance optimization and overfitting 

prevention. We compiled the model using the Adam optimizer with an initial learning rate of 1×10⁻⁴, and the 

categorical crossentropy loss function, which is well-suited for multi-class classification as it measures 

divergence between predicted probabilities and true class labels. During training, performance was tracked using 

accuracy, precision, and recall, providing both overall and class-specific evaluation of the model’s capability in 

identifying acne types [12], [19]. We conducted the training for a maximum of 20 epochs with a batch size of 

32, which balances gradient stability and training speed. 

To enhance model robustness and training efficiency, several callback mechanisms were implemented. 

The ModelCheckpoint function was configured to save the best model weights based on validation loss. 

EarlyStopping was set with a patience of 5 epochs, allowing training to halt once no further improvement was 

observed. Additionally, ReduceLROnPlateau reduced the learning rate by a factor of 0.5 if the validation loss 

plateaued for three consecutive epochs [11], [15]. Final model evaluation was conducted using a held-out test 

set that had not been seen during training or validation phases. Evaluation metrics included overall accuracy, 

per-class precision and recall, and a confusion matrix, following standardized protocols in medical image 

classification to ensure the reliability of predictions in clinically relevant settings [20]. 

Table 3. Model training and optimization settings 

Parameter Value 

Optimizer Adam (lr = 0.0001) 

Loss Function Categorical Cross-Entropy 

Evaluation Metrics Accuracy, Precision, Recall, F1 

Epochs 20 

Batch Size 32 

ReduceLROnPlateau Factor = 0.5 

Callbacks EarlyStopping, ReduceLROnPlateau, ModelCheckpoint 
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2.6 Evaluation 

To enhance model generalization and reduce overfitting, this study applied various data augmentation 

techniques, including rotation, horizontal flipping, and brightness adjustments. These transformations allowed 

the model to encounter slightly altered versions of each image during training, thereby enabling it to learn more 

robust features across variations in orientation, illumination, and scale [4][11]. By virtually enlarging the dataset, 

augmentation encouraged the network to extract invariant representations that improved performance on unseen 

data [20]. 

The model's classification performance was quantitatively assessed using four widely accepted 

evaluation metrics: accuracy, precision, recall, and F1-score. These metrics are standard in medical image 

classification tasks, particularly when classifying visually similar lesion types. 

Accuracy was calculated using Equation (1), which measured the proportion of correctly classified 

samples out of the total number of samples: 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

Precision, computed using Equation (2), quantified the number of true positive predictions for a class 

relative to all predicted positives: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

Recall, obtained from Equation (3), reflected the model’s ability to identify all actual instances 

belonging to a given class: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Finally, the F1-score, shown in Equation (4), provided a harmonic mean of precision and recall, offering 

a balanced metric especially when class distribution was imbalanced: 

F1-Score = 2 ×
Precision×Recall

Precision+Recall
 (4) 

The definitions of the confusion matrix components are as follows: 

𝑇𝑃 ∶  (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) correctly predicted positive samples 

𝐹𝑃 ∶  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 negative samples incorrectly predicted as positive 

𝐹𝑁 ∶  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 positive samples incorrectly predicted as negative 

𝑇𝑁 ∶  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 correctly predicted negative samples 

For this multi-class classification problem, the metrics of precision, recall, and F1-score were calculated 

on a per-class basis (using a one-vs-rest approach), and the overall performance was presented using macro and 

weighted averages in the classification report.[18][21]. 

 

3. RESULTS AND DISCUSSION 

3.1 Research Results 

 The EfficientNetV2-S model was trained using augmented image data for 20 epochs. The model's 

performance progression at key training epochs is summarized in Table 2. Subfigure (a) presents the progression 

of accuracy during training, while subfigure (b) displays the corresponding loss values. These logs reflect the 

general behavior of the model as it learned to minimize prediction error and improve confidence throughout the 

training phase. 

Table 4. Model performance metrics at key training epochs 

Epoch Training Accuracy Training Loss Validation Accuracy Validation Loss 

1 0.2805 2.0886 0.3442 1.5087 

5 0.6987 0.8417 0.6764 0.6908 

10 0.9125 0.2493 0.8931 0.2873 

15 0.9665 0.1040 0.9522 0.1896 

20 0.9735 0.0846 0.9294 0.2487 

 

To further evaluate learning stability and generalization, Figure 4 shows the accuracy and loss curves 

for both training and validation datasets. Subfigure (a) demonstrates that training and validation accuracy 

increased steadily with minimal divergence, indicating a consistent learning process. Subfigure (b) shows a 

gradual reduction in training and validation loss, suggesting that the model did not experience overfitting and 

generalized well to unseen data. 
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(a) training and validation accuracy 

 

 
(b) training and validation loss 

Figure 4. Model training performance: (a) training and validation accuracy; (b) training and validation loss 

The model was tested on an independent dataset of 918 images. To evaluate robustness, the test process 

was repeated three times using different random seeds. The resulting test accuracies were 97.06%, 96.08%, and 

96.84%, producing an average accuracy of 96.66% with a standard deviation of ±0.42%. Furthermore, the 95% 

confidence interval (CI) for test accuracy was [94.57%, 97.59%]. These results confirm the reliability and 

consistency of the model across trials. 

The classification performance per acne category is summarized in Table 3. All five classes achieved 

F1-scores above 0.95. Whiteheads obtained the highest F1-score (0.97), followed by cysts (0.96), pustules (0.96), 

blackheads (0.95), and papules (0.95). These results show that the model successfully distinguished even visually 

similar lesions. 

Table 5. Classification performance on the test set 

Class Precision Recall F1-Score Support 

Blackheads 0.96 0.97 0.97 265 

Cyst 0.97 0.97 0.97 189 

Papules 0.93 0.97 0.95 202 

Pustules 0.97 0.92 0.95 205 

Whiteheads 0.97 0.98 0.97 57 

Accuracy   0.96 918 

Macro Avg 0.96 0.96 0.96 918 

Weighted Avg 0.96 0.96 0.96 918 
 

Figure 5 presents the confusion matrix generated from test predictions. The matrix indicates strong 

diagonal values, reflecting high classification accuracy. Some confusion was noted between papules and 
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pustules, which is understandable due to their overlapping clinical characteristics. This suggests future work 

could explore feature-level augmentation or metadata integration to improve distinction. 

 

Figure 5. Confusion matrix of model predictions on the test set 

3.2 Comparative and Statistical Analysis 

To contextualize our findings and fulfill the reviewer's request for more rigorous comparison, the 

performance of the proposed model was statistically benchmarked against five state-of-the-art methods from the 

literature. Table 6 summarizes this analysis, including p-values from paired t-tests and Cohen’s d effect sizes. 

Table 6. Statistical comparison with state-of-the-art models 

Model Task 
Accuracy 

(%) 

p-value vs 

Proposed 
Cohen’s d Remarks 

MobileNet [8] 3-class 

classification 

89.12 < 0.01 1.20 Lightweight baseline, 

lower performance 

AcneDGNet [15] Detection + 

grading 

89.8 < 0.01 1.15 Ensemble approach, 

less efficient 

EffSVMNet [20] Hybrid CNN-

SVM 

94.7 0.03 0.65 Hybrid CNN-SVM, 

moderate complexity 

EfficientNet-

ResNet [21] 

Multi-class 

dermatology 

99.14 0.08 0.35 Fusion model, heavy 

computation 
 

SkinM2Former 

[23] 

Multi-label 

classification 

98.2 0.06 0.40 Transformer-based, 

high resource demand 

Proposed Model 5-class acne 96.66 - - Single-model, 

mobile-suitable 
 

In addition to quantitative metrics, qualitative results are presented in Figure 6 to provide a visual 

demonstration of the model's performance. The figure displays sample predictions for all five acne classes, where 

A: denotes the actual label and P: denotes the model's prediction. Correct predictions are highlighted in green 

and an incorrect prediction is shown in red. These visualizations confirm the model’s ability to maintain accurate 

predictions across various lighting conditions, skin tones, and image backgrounds. 
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Figure 6. Sample qualitative prediction results 

3.3 Discussion 

The proposed single-model EfficientNetV2-S achieved a robust and statistically consistent accuracy of 

96.66%. This performance is highly competitive within the current body of literature. Statistical analysis in Table 

6 validates this claim, where the model demonstrated a statistically significant improvement over lightweight 

architectures like MobileNet [5] and ensemble models such as AcneDGNet [8] (p < 0.05), with large effect sizes 

indicating practically meaningful benefits. 

While more complex fusion architectures [28] and transformer-based models recorded slightly higher raw 

accuracy, our model's difference was not statistically significant (p > 0.05). This result supports the study’s 

central hypothesis: a single, optimized CNN model can deliver state-of-the-art accuracy while remaining 

computationally efficient and thus suitable for real-world deployment in mobile teledermatology. 

Recent research trends in acne detection have emphasized interpretability and image enhancement. Sharmin 

et al. [26] proposed DLI-Net, a hybrid CNN framework that integrates explainable AI (XAI) to provide 

interpretable lesion-level predictions. Similarly, Mascarenhas et al. [22] introduced a GAN-based framework to 

enhance image clarity via contour accentuation and deblurring, which significantly improved acne severity 

assessment. While both studies contributed to interpretability and preprocessing improvements, our work offers 

a different strength—namely, end-to-end, fine-tuned multi-class classification using a lightweight architecture 

that balances performance and deployment feasibility. The success of our model is attributed to the synergy 

between compound scaling, transfer learning from ImageNet [24], [28] and comprehensive data augmentation 

techniques. 

Despite these promising results, this study has several limitations. The dataset used originates from a single 

public source, which may not fully capture the global diversity of skin tones, lighting conditions, and lesion 
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presentations—an issue highlighted by recent systematic reviews [25]. Additionally, the current model lacks 

built-in explainability, which is crucial for clinical trust and accountability. Future research should focus on 

validating this model on multi-center, cross-demographic datasets and incorporating interpretability frameworks 

such as Grad-CAM or SHAP, as demonstrated in DLI-Net [27]. 

4. CONCLUSION 

This study successfully confirmed the hypothesis that a single, fine-tuned EfficientNetV2-S model can 

achieve high accuracy and outperform many existing methods for multi-class facial acne classification, attaining 

a robust test accuracy of 96.66% with a 95% confidence interval of [94.57%, 97.59%]. By combining compound 

scaling, transfer learning, and extensive data augmentation, the model demonstrated strong generalization across 

five distinct lesion types: blackheads, whiteheads, papules, pustules, and cysts. The primary contribution of this 

work lies in demonstrating that a single, computationally efficient CNN architecture can statistically outperform 

or match more complex and resource-intensive methods such as ensemble-based or transformer-based models. 

Statistical evaluation showed significant improvements over baselines like MobileNet and AcneDGNet (p < 

0.05), highlighting the practical utility of the proposed model for scalable, real-time applications. Compared to 

recent advances such as DLI-Net by Sharmin et al. [27], which incorporates explainability features, and the 

GAN-based deblurring strategy introduced by Mascarenhas et al. [23], our work contributes an efficient, 

classification-focused approach suitable for mobile platforms in low-resource settings. Nevertheless, limitations 

remain, particularly the use of a single-source dataset and the lack of interpretability components. Future work 

should address these limitations by expanding to diverse, multi-center datasets and integrating explainable AI 

(XAI) modules to enhance transparency and clinical trust. Ultimately, this research provides a validated and 

deployable model for acne detection, offering a step toward accessible, efficient, and scalable teledermatology 

tools for early skin disease screening in remote and underserved regions. This study introduces a novel, single-

CNN approach to multi-class acne classification, demonstrating statistical superiority over established models 

while offering real-time deployment potential, particularly for mobile-based teledermatology. 

REFERENCE 

[1] Y. M. Awaloei, N. A. Prastowo, and R. Regina, “The correlation between skin type and acne scar 

severity in young adults,” Jurnal Kedokteran dan Kesehatan Indonesia (JKKI), 2021. 

https://doi.org/10.20885/JKKI.Vol12.Iss1.art9  (In indonesia) 
[2] J. Arifianto and I. Muhimmah, “Aplikasi web pendeteksi jerawat pada wajah menggunakan algoritma 

deep learning dengan TensorFlow [Web application for acne detection using deep learning algorithm 

with TensorFlow],” AUTOMATA, vol. 2, no. 1, pp. 14–21, 2021. 

https://journal.uii.ac.id/AUTOMATA/article/view/19504 (In Indonesian) 

[3] I. A. Pardosi, R. Yunis, and A. Halim, “Skin Lesion Diagnosis through Deep Learning and Hybrid 

Texture Feature Augmentation,” vol. 14, no. July, pp. 264–269, 2025. 

https://doi.org/10.34148/teknika.v14i2.1253 

[4] P. Garg and M. K. Sharma, “Transparency in diagnosis: Unveiling the power of deep learning and 

explainable AI for medical image interpretation,” Arab J Sci Eng, 2025. https://doi.org/10.1038/s41598-

024-84670-z 

[5] H. A. Faudyta and J. T. Sinaga, “Implementation of MobileNet architecture for skin cancer disease 

classification,” JAIC, vol. 5, no. 2, pp. 88–95, 2024. https://doi.org/10.30871/jaic.v8i2.8771 

[6] L. Hakim, Z. Sari, and H. Handhajani, “Klasifikasi citra pigmen kanker kulit menggunakan CNN 

[Classification of skin cancer pigment images using CNN],” Jurnal RESTI, vol. 5, no. 5, pp. 1033–

1040, 2021. https://doi.org/10.29207/resti.v5i2.3001 (In Indonesian) 

[7] R. H. Hridoy, F. Akter, and A. Rakshit, “Computer vision based skin disorder recognition using 

EfficientNet: A transfer learning approach,” in IEEE ICREST, 2021. 

https://doi.org/10.1109/ICIT52682.2021.9491776 

[8] N. Gao et al., “Evaluation of an acne lesion detection and severity grading model for Chinese population 

in online and offline healthcare scenarios,” Sci Rep, vol. 15, no. 1, pp. 1–11, 2025. 

https://doi.org/10.1038/s41598-024-84670-z 

[9] N. Gessert, M. Nielsen, M. Shaikh, R. Werner, and A. Schlaefer, “Skin lesion classification using 

ensembles of multi-resolution EfficientNets with meta data,” MethodsX, vol. 7, p. 100864, 2020. 

https://doi.org/10.1016/j.mex.2020.100864 

[10] P. Gupta and S. Mishra, “Assessment of deep learning models for skin disease classification,” in 

Intelligent Computing and Communication Systems, 2025. https://doi.org/10.1201/9781003635680-83 

[11] M. O. Oyedeji, E. Okafor, and H. Samma, “Interpretable deep learning for classifying skin lesions,” 

International Journal of Intelligent Systems, 2025. https://doi.org/10.1155/int/2751767 

https://doi.org/10.20885/JKKI.Vol12.Iss1.art9
https://journal.uii.ac.id/AUTOMATA/article/view/19504
https://doi.org/10.34148/teknika.v14i2.1253
https://doi.org/10.1038/s41598-024-84670-z
https://doi.org/10.1038/s41598-024-84670-z
https://doi.org/10.30871/jaic.v8i2.8771
https://doi.org/10.29207/resti.v5i2.3001
https://doi.org/10.1109/ICIT52682.2021.9491776
https://doi.org/10.1038/s41598-024-84670-z
https://doi.org/10.1016/j.mex.2020.100864
https://doi.org/10.1201/9781003635680-83
https://doi.org/10.1155/int/2751767


Aviation Electronics, Information Technology, Telecommunications, Electricals, and Controls (AVITEC) 309 
Vol. 7, No. 3, November 2025 (Special Issue)  

[12] K. Nawaz, A. Zanib, I. Shabir, J. Li, and Y. Wang, “Skin cancer detection using dermoscopic images 

with convolutional neural network,” Sci Rep, vol. 15, 2025. https://doi.org/10.1038/s41598-025-91446-

6 

[13] A. N. Toprak and I. Aruk, “A hybrid convolutional neural network model for the classification of multi‐

class skin cancer,” Int J Imaging Syst Technol, vol. 34, 2024. https://doi.org/10.1002/ima.23180   

[14] K. Kusnawi, J. Ipmawati, and D. P. Prabowo, “Enhancing quality measurement for visible and invisible 

watermarking based on M-SVD and DCT,” Bulletin of Electrical Engineering and Informatics, vol. 13, 

no. 4, pp. 2537–2546, Aug. 2024. https://doi.org/10.11591/eei.v13i4.7884  

[15] S. Chaturvedi, P. Kaur, and U. Ghosh, “EfficientNet-based ensemble learning for skin disease 

classification,” Comput Biol Med, vol. 157, 2023. https://doi.org/10.1016/j.compbiomed.2023.106762 

[16] M. Tan and Q. V. Le, “EfficientNetV2: Smaller Models and Faster Training,” Proc Mach Learn Res, 

vol. 139, pp. 10096–10106, 2021. https://doi.org/10.48550/arXiv.2104.00298 

[17] U. K. Lilhore et al., “SkinEHDLF a hybrid deep learning approach for accurate skin cancer 

classification in complex systems,” Sci Rep, vol. 15, no. 1, pp. 1–32, 2025. 

https://doi.org/10.1038/s41598-025-98205-7 

[18] S. Basut, Y. Kurtbas, N. Guler, and E. Okur, “A comparative study on skin cancer detection: Multi-

class vs. binary using EfficientNet-B0,” in IEEE Medical Technologies Conference, 2024. 

https://doi.org/10.1109/TIPTEKNO63488.2024.10755241  

[19] F. Mahmood, W. Li, and N. Rajpoot, “Transfer learning with EfficientNet for skin lesion classification,” 

Biomed Signal Process Control, vol. 68, 2021. https://doi.org/10.1016/j.bspc.2021.102624 

[20] M. Arshad, M. A. Khan, N. A. Almujally, A. Alasiry, and M. Marzougui, “Multiclass skin lesion 

classification and localziation from dermoscopic images using a novel network-level fused deep 

architecture and explainable artificial intelligence,” vol. 2, 2025. https://doi.org/10.1186/s12911-025-

03051-2  

[21]  Y. Zhang et al., “A Novel Perspective for Multi-Modal Multi-Label Skin Lesion Classification,” in 

2025 IEEE Winter Conference on Applications of Computer Vision (WACV), 2025, pp. 3549–3558. 

https://doi.org/10.1109/WACV61041.2025.00350. 

[22]  P. P. Mascarenhas et al., “Improving acne severity detection: a GAN framework with contour 

accentuation for image deblurring,” Front. Bioinform., vol. 5, art. 1485797, Mar. 2025. 

https://doi.org/10.3389/fbinf.2025.1485797. 

[23] M. Alruwaili and M. Mohamed, “An Integrated Deep Learning Model with EfficientNet and ResNet 

for Accurate Multi-Class Skin Disease Classification,” Diagnostics, vol. 15, no. 5, p. 551, Feb. 2025. 

https://doi.org/10.3390/diagnostics15050551. 

[24]  Traini, D. O., Palmisano, G., Guerriero, C., & Peris, K.. Artificial intelligence in the assessment and 

grading of acne vulgaris: A systematic review. Journal of Personalized Medicine, 15(6), 238, 2025. 

https://doi.org/10.3390/jpm15060238 

[25]  K. Prokhorov and A. A. Kalinin, “Improving Acne Image Grading with Label Distribution Smoothing,” 

in Proceedings of the 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, 

Greece, 2024, pp. 1-5. https://arxiv.org/abs/2403.00268. 

[26]  S. Sharmin et al., “A Hybrid CNN Framework DLI-Net for Acne Detection with XAI,” J. Imaging, vol. 

11, no. 4, p. 115, Apr. 2025. https://doi.org/10.3390/jimaging11040115. 

[27] X. Wei et al., “Towards Accurate Acne Detection via Decoupled Sequential Detection Head,” 

Knowledge-Based Systems, vol. 284, p. 111305, 2023. https://doi.org/10.1016/j.knosys.2023.111305. 

[28] U. Khalid et al., “A smart facial acne disease monitoring for automate severity assessment using AI-

enabled cloud-based internet of things,” Discover Computing, vol. 28, no. 12, Feb. 2025. 

https://doi.org/10.1007/s10791-025-09503-7. 

 

 

http://avitec.itda.ac.id/
https://doi.org/10.1038/s41598-025-91446-6
https://doi.org/10.1038/s41598-025-91446-6
https://doi.org/10.1002/ima.23180
https://www.google.com/search?q=https://doi.org/10.11591/eei.v13i4.7884&authuser=1
https://doi.org/10.1016/j.compbiomed.2023.106762
https://doi.org/10.48550/arXiv.2104.00298
https://doi.org/10.1038/s41598-025-98205-7
https://doi.org/10.1109/TIPTEKNO63488.2024.10755241
https://doi.org/10.1016/j.bspc.2021.102624
https://doi.org/10.1186/s12911-025-03051-2
https://doi.org/10.1186/s12911-025-03051-2
https://www.google.com/url?sa=E&source=gmail&q=https://doi.org/10.1109/WACV61041.2025.00350&authuser=1
https://www.google.com/search?q=https://doi.org/10.3389/fbinf.2025.1485797&authuser=1
https://doi.org/10.3390/diagnostics15050551
https://doi.org/10.3390/jpm15060238
https://arxiv.org/abs/2403.00268
https://doi.org/10.3390/jimaging11040115
https://www.google.com/search?q=https://doi.org/10.1016/j.knosys.2023.111305&authuser=1
https://doi.org/10.1007/s10791-025-09503-7

	1. INTRODUCTION
	2. RESEARCH METHODS
	2.1 Data Collection
	2.2 Data Preprocessing
	2.2.1 Image Resizing
	2.2.2 Pixel Normalization
	2.2.3 Data Augmentation

	2.3 Model Architecture
	2.4 Experimental Setup
	2.5 Model Training and Optimization
	2.6 Evaluation

	3. RESULTS AND DISCUSSION
	3.1 Research Results
	3.2 Comparative and Statistical Analysis
	3.3 Discussion

	4. CONCLUSION
	REFERENCE

