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 Diabetes mellitus poses a growing global health concern, particularly in low- 

and middle-income countries where early detection remains limited, 

demanding classification models that balance accuracy, interpretability, and 

adaptability to heterogeneous clinical data. This study proposes and 

evaluates the Adaptive Kernel Probability Model (AKPM), a novel 

nonparametric probabilistic classifier designed to enhance diabetes 

prediction by performing localized kernel density estimation with adaptive 

bandwidth selection via k-nearest neighbors. Implemented and tested on the 

Pima Indians Diabetes Dataset, AKPM outperformed conventional 

classifiers—Naïve Bayes and Gaussian Mixture Models (GMM)—across all 

evaluation metrics, achieving 87.5% accuracy, 83.3% precision, 76.9% 

recall, and an F1-score of 80.0% for the diabetic class, alongside 89.3% 

precision and 92.6% recall for the normal class. These results surpassed 

GMM (83.0% accuracy, 71.6% F1-score) and Naïve Bayes (80.0% 

accuracy, 66.6% F1-score), confirming AKPM’s superior capability to 

detect diabetic cases while minimizing false negatives. Offering transparent 

posterior inference and a modular design, AKPM emerges as a reliable and 

interpretable solution for clinical decision support systems and real-world 

healthcare applications. 
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1. INTRODUCTION  

Diabetes mellitus represents one of the most pervasive metabolic disorders worldwide, with the 

International Diabetes Federation reporting over 537 million adults affected in 2021, a figure expected to escalate 

significantly by 2030 [1][2]. The prevalence of diabetes continues to rise sharply, especially across low- and 

middle-income countries, where early screening and access to healthcare remain critically inadequate [3]. This 

chronic disease, when undiagnosed or poorly managed, contributes to severe complications, including 

cardiovascular disease, nephropathy, and lower-limb amputation, leading to both individual suffering and 

significant socioeconomic strain [4]. Consequently, the economic burden of diabetes has been recognized as one 

of the most substantial among non-communicable diseases, emphasizing the need for scalable, data-driven 

diagnostic models capable of supporting early detection in resource-limited environments [5][6]. The ongoing 

integration of machine learning in clinical diagnostics is transforming this paradigm, providing an avenue for 

intelligent systems to assist medical professionals with reliable and adaptive decision support [7].Medical 

Despite these advancements, traditional probabilistic classifiers, such as Naïve Bayes, exhibit intrinsic 

weaknesses due to the unrealistic assumption of feature independence, which often fails in clinical datasets where 

physiological variables are correlated [8]. Similarly, Gaussian Mixture Models (GMMs) offer greater flexibility 

but are constrained by parameter sensitivity and a tendency to overfit on imbalanced or small datasets [9]. 

Meanwhile, deep learning frameworks, including convolutional and ensemble architectures, demonstrate 

remarkable predictive power but face limitations concerning data scarcity, interpretability, and computational 

cost [10][11]. As a result, the search for models that balance accuracy, efficiency, and interpretability has become 
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central to the development of reliable medical AI [12]. This ongoing challenge highlights a research gap: the 

absence of models that can adaptively capture local probability structures in heterogeneous medical data. 

The Adaptive Kernel Probability Model (AKPM) seeks to bridge this methodological divide by 

introducing a non-parametric probabilistic framework that models class-conditional densities using adaptive 

kernel density estimation (KDE). This approach dynamically adjusts the bandwidth parameter (h) according to 

local data density, ensuring that probabilistic estimations remain sensitive to structural variations in the dataset  

[13]. The model enhances classification robustness by addressing both feature interdependence and multimodal 

distributions, outperforming standard Naïve Bayes and GMM methods in terms of predictive stability and 

generalization [14][15]. Importantly, AKPM maintains an interpretable mathematical structure that aligns with 

probabilistic reasoning principles, making it a clinically explainable alternative to black-box neural architectures 

[16]. 

Recent literature in adaptive machine learning for medical diagnostics supports the superiority of such 

localized estimation approaches. For instance, Zhang et al. [17] demonstrated that adaptive bandwidth selection 

in kernel-based models significantly improved sensitivity and specificity in cardiovascular and diabetes risk 

prediction. Similarly, Li et al. [4]found that kernel-driven classifiers outperform linear probabilistic models when 

addressing imbalanced medical datasets. Nonetheless, as highlighted by [16] Kiran et al. (2022), in a 33-year 

bibliometric review, found that most diabetes prediction studies have not rigorously explored adaptive KDE 

frameworks or probabilistic models beyond global Gaussian assumptions. Furthermore, [12] emphasized the 

pressing need for transparent and interpretable AI models in healthcare to ensure clinical accountability. This 

ongoing gap provides a strong rationale for exploring AKPM as a scalable, interpretable, and high-performing 

alternative for real-world clinical data, particularly in binary classification tasks such as diabetes diagnosis. 

This study aims to develop an Adaptive Kernel Probability Model (AKPM) to classify diabetes using 

medical diagnostic data accurately. The research seeks to improve probabilistic estimation by integrating 

adaptive bandwidth selection into kernel density estimation, thereby capturing localized data patterns more 

effectively. It also aims to evaluate AKPM’s performance against conventional models such as Naïve Bayes and 

Gaussian Mixture Models through rigorous empirical testing. Additionally, the model’s robustness will be 

assessed using metrics like accuracy, precision, recall, and F1-score on the Pima Indians Diabetes Dataset. By 

doing so, the study strives to demonstrate AKPM’s superiority in interpretability, flexibility, and predictive 

reliability for clinical decision support systems. 

This research offers four key contributions to the field of medical probabilistic modeling. First, it 

introduces a non-parametric classifier that leverages adaptive kernel density estimation to improve diabetes 

detection accuracy. Second, the proposed AKPM framework eliminates the need for strong distributional 

assumptions, making it well-suited to real-world clinical data. Third, it presents a detailed performance 

comparison against established models, highlighting AKPM's robustness across diverse evaluation metrics. 

Finally, the study provides a reproducible implementation and a methodological blueprint that support future 

research in interpretable, scalable machine learning for healthcare. 

2. METHODOLOGY 

2.1 Dataset 

The Pima Indians Diabetes Dataset, widely used in clinical predictive modeling, comprises anonymized 

diagnostic records collected from female patients of Pima Indian heritage aged 21 and above. This dataset 

contains 768 instances, each described by 8 numerical attributes reflecting relevant medical indicators, such as 

glucose concentration, blood pressure, BMI, insulin level, and age. A binary outcome variable indicates whether 

a patient has diabetes (1) or not (0), allowing for precise supervised classification. The class distribution is 

moderately imbalanced, with approximately 35% of samples labeled as positive for diabetes and 65% labeled as 

negative. Its structured format and widespread citation in health informatics research make it a standard 

benchmark for evaluating probabilistic classifiers.  

2.2 Preprocessing 

Preprocessing steps were implemented to ensure the dataset's integrity and consistency before model 

training. Missing values in features such as insulin and skin thickness were imputed using mean substitution to 

preserve sample size without introducing significant bias. Subsequently, all numerical features were normalized 

using min-max scaling to map values to the uniform range [0, 1], facilitating faster convergence and balanced 

influence across dimensions. The dataset was then partitioned into training and test sets using an 80:20 stratified 

split, preserving the original class distribution in both sets. These procedures collectively prepared the data for 

robust and reproducible evaluation of the proposed probabilistic model.  

2.3 Model AKPM 

The Adaptive Kernel Probability Model (AKPM) provides a flexible probabilistic framework for 

estimating class-conditional densities without imposing strict distributional assumptions. Unlike parametric 

models that impose global Gaussian constraints, AKPM employs non-parametric Kernel Density Estimation 
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(KDE) to compute the likelihood 𝑃( 𝑥 ∣∣ 𝑦 ) for a feature vector 𝑥 given class 𝑦. The fundamental KDE 

formulation is provided in Equation (1). 

𝑃( 𝑥 ∣∣ 𝑦 ) =
1 

𝑁𝑦
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑁𝑦

𝑖=1
  

(1) 

Equation (1) evaluates the aggregated kernel contributions across all samples in class 𝑦, where 𝑁𝑦 

denotes the number of training samples belonging to class 𝑦, 𝑥𝑖 represents each sample, and 𝐾ℎ(⋅) is a kernel 

function typically Gaussian with bandwidth ℎ. The prior probability for each class 𝑦 is computed using Equation 

(2). 

𝑃(𝑦) =
𝑁𝑦

𝑁
     

(2) 

Where 𝑁 is the total number of samples across all classes. As referenced in Equation (2), the prior 

reflects the empirical frequency of each class within the dataset. 

To enhance sensitivity to local data characteristics, AKPM incorporates adaptive bandwidth selection, 

which dynamically adjusts the kernel bandwidth based on instance-level density. Instead of using a fixed global 

bandwidth, the model computes an instance-specific bandwidth using the mean distance to the 𝑘-nearest 

neighbors. This adaptive mechanism is mathematically defined in Equation (3). 

ℎ(𝑥) =
1

𝑘
∑ ∥𝑘

𝑗=1 𝑥 − 𝑥𝑗 ∥  
(3) 

Where 𝑥𝑗 denotes the 𝑘-nearest neighbors of 𝑥 and ∥ ⋅ ∥ represents Euclidean distance. As shown in 

Equation (3), this approach allows the bandwidth to shrink in dense regions and expand in the sparse areas, 

thereby ensuring more accurate probability estimation. 

Following the computation of the likelihood and prior terms, the posterior probability 𝑃( 𝑦 ∣∣ 𝑥 ) is 

derived using Bayes’ theorem, as presented in Equation (4). 

𝑃( 𝑦 ∣∣ 𝑥 ) =
𝑃( 𝑥∣∣𝑦 )𝑃(𝑦)

∑ 𝑃( 𝑥∣∣𝑦
′

)𝑃(𝑦′)
𝑦′

  
(4) 

Equation (4) provides the foundation for probabilistic classification, where the predicted class 

corresponds to the class 𝑦 that yields the highest posterior probability. 

By leveraging localized density information through adaptive kernels, as formalized in Equations (1) 

and (4), AKPM enables precise modeling of nonlinear decision boundaries in complex datasets. This capability 

makes the framework particularly effective for medical applications where inter-feature correlations, 

distributional heterogeneity, and class imbalance are prevalent. Figure 1 illustrates the overall AKPM workflow, 

including preprocessing, adaptive bandwidth computation, density estimation, and posterior inference. 

Collectively, these components enable AKPM to outperform conventional static kernel models by adapting to 

the nuanced structure of real-world clinical data. 

As illustrated in Figure 1, the AKPM model architecture involves four main stages: normalization and 

imputation of raw clinical data, computation of local bandwidths for kernel density estimation, evaluation of 

class-conditional likelihoods, and final classification based on posterior probabilities. 

 

Figure 1. AKPM workflow diagram 

2.4 Baseline Models for Comparison 

To rigorously evaluate the effectiveness of the proposed Adaptive Kernel Probability Model (AKPM), 

two widely used probabilistic classifiers are selected as baselines: Naïve Bayes (NB) and Gaussian Mixture 

Model (GMM). These models are chosen for their historical significance, mathematical simplicity, and frequent 

use in medical classification literature, including in diabetes detection. 
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The Naïve Bayes classifier operates under the fundamental assumption of conditional independence 

among features given the class label. While this assumption yields a highly computationally efficient and 

interpretable model, it often fails in real-world medical datasets, where clinical variables—such as glucose, 

insulin, BMI, and blood pressure—are statistically correlated. This simplification can reduce the classifier’s 

discriminative power, particularly when subtle feature interactions carry necessary diagnostic signals. 

Nevertheless, its fast convergence and low memory footprint make NB a popular choice for low-latency health 

prediction systems and as a baseline benchmark. 

In contrast, the Gaussian Mixture Model offers greater flexibility by modeling each class's feature 

distribution as a mixture of multiple Gaussian components. It estimates the probability density 𝑃( 𝑥 ∣∣ 𝑦 ) by 

optimizing both the component means and covariances through the Expectation-Maximization (EM) algorithm. 

GMMs can capture multimodal distributions in the data, enabling them to represent class variability better than 

Naïve Bayes. However, it remains a parametric model, assuming that a combination of Gaussian forms can 

approximate the underlying data structure. Furthermore, GMMs are sensitive to parameter initialization and can 

easily overfit when applied to imbalanced or small datasets—a common scenario in clinical data settings. 

Despite their widespread application, both Naïve Bayes and GMMs rely on global assumptions about 

data distribution, making them less responsive to local variations in density and feature interactions. In contrast, 

AKPM employs an adaptive, instance-based estimation approach that dynamically adjusts the kernel bandwidth 

based on the local structure of the feature space. This distinction enables AKPM to remain robust in the presence 

of nonlinear decision boundaries, local heterogeneity, and irregular feature distributions, thereby offering a 

significant methodological advance over classical baselines. 

By benchmarking AKPM against NB and GMM using the same preprocessing pipeline and evaluation 

metrics, this study aims to demonstrate the relative benefits of localized probabilistic modeling in clinical 

prediction tasks—particularly for imbalanced datasets such as the Pima Indians Diabetes Dataset. 

2.5 Evaluation Metrics 

To comprehensively assess the performance of the proposed Adaptive Kernel Probability Model 

(AKPM) and its baseline counterparts, we employ a suite of standard classification evaluation metrics derived 

from the confusion matrix. Accuracy measures the proportion of correct predictions across all classes. It is 

defined in Equation (5). 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   

(5) 

While accuracy is informative in balanced datasets, it can be misleading when applied to imbalanced 

data such as the Pima Indians Diabetes Dataset, where the majority of samples belong to the negative class. 

Precision quantifies the proportion of positive predictions that are actually correct, offering insight into the 

reliability of positive classifications. It is formally defined in Equation (6). 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

(6) 

This metric is critical when false positives incur costs, such as unnecessary medical interventions. 

Recall, also referred to as sensitivity or true positive rate, measures the proportion of actual positive cases 

correctly identified by the model. It is especially critical in healthcare settings, where false negatives can lead to 

missed diagnoses. The recall formula is presented in Equation (7). 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

(7) 

F1-score serves as the harmonic mean of precision and recall, providing a single balanced metric that 

accounts for both false positives and false negatives. It is especially valuable for evaluating models on 

imbalanced datasets, where accuracy alone is insufficient. The F1-score is defined as (8). 

F1-score = 2 ×
Precision×Recall

Precision+Recall
  

(8) 

Each of these metrics is computed for all models and compiled into a comprehensive classification 

report, enabling consistent, interpretable comparisons of performance across classifiers. Given the class 

imbalance inherent in the Pima Indians Diabetes Dataset where negative cases outnumber positive ones metrics 

such as recall and F1-score are prioritized. A high recall value indicates that the model effectively identifies 

diabetic patients, while the F1-score ensures this detection does not come at the cost of excessive false positives. 

By evaluating AKPM and the baseline models from a multi-metric perspective, the analysis ensures 

that performance is understood in a clinically meaningful, risk-sensitive context, particularly relevant for disease 

detection systems in which misclassification consequences are asymmetric. 

 

http://avitec.itda.ac.id/


Marselina Endah Hiswati, et. al.: Adaptive Kernel Probability Model (AKPM) for Interpretable…  167 
 

3. RESULTS AND DISCUSSION 

3.1 Confusion Matrix 

 The confusion matrix provides an interpretable breakdown of classification outcomes by enumerating 

true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). In the context of diabetes 

prediction, this matrix becomes critical for understanding how well a model can distinguish between diabetic 

and non-diabetic individuals a distinction with direct clinical implications. Table 1 below summarizes the 

confusion matrix components for the three evaluated models: Naïve Bayes, Gaussian Mixture Model (GMM), 

and the proposed Adaptive Kernel Probability Model (AKPM). 

Table 1. Confusion matrix 

Model TP FP TN FN 

Naïve Bayes 40 15 120 25 

Gaussian Mixture 43 12 123 22 

AKPM 

(Proposed) 
50 10 125 15 

 

The Naïve Bayes classifier, while computationally simple and fast, performs relatively poorly at 

identifying diabetic cases. With 25 false negatives, it fails to detect one in three actual diabetic patients, which 

is an unacceptable risk in medical applications. Furthermore, its 15 false positives may lead to unnecessary 

psychological or medical follow-ups for healthy individuals. 

The Gaussian Mixture Model improves upon Naïve Bayes by reducing both FP and FN counts (to 12 

and 22, respectively). This suggests greater capability to capture non-Gaussian and overlapping distributions, 

particularly through its mixture-based likelihood estimation. However, GMM still makes more than 20 

classification errors per class, indicating insufficient adaptation to local feature behavior, particularly in boundary 

regions. 

In contrast, the proposed AKPM demonstrates superior classification balance, achieving the highest 

true positives (50) and true negatives (125) among all models tested. It also has the lowest false-positive (10) 

and significantly reduced false-negative (15) counts. These outcomes reflect AKPM’s ability to: Accurately 

detect positive diabetic cases (high recall), Avoid mislabeling healthy individuals (high precision), Adapt to local 

density patterns via kernel bandwidth optimization, Overcome the rigid distributional assumptions of NB and 

GMM. 

Such a low false negative rate (15) is significant in diabetes screening, where undetected cases can lead 

to delayed treatment and long-term complications. The false-positive rate, while present, remains manageable 

within acceptable clinical screening thresholds. 

This analysis confirms that AKPM not only improves overall classification performance but also aligns 

with clinical priorities, namely, minimizing the risk of undetected diabetes while preserving the trustworthiness 

of positive predictions. The confusion matrix thus provides foundational evidence of AKPM’s practical utility 

in medical diagnostic decision-support systems, particularly under conditions of class overlap and multimodal 

distributions. 

As shown in Figure 2, AKPM achieved the highest true-positive count and the lowest false-negative 

rate among the tested models, underscoring its strong sensitivity and clinical reliability. 

 

Figure 2. Confusion matrix – AKPM 
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3.2 Classification Report 

To further assess the predictive reliability of each model, a detailed classification report was compiled 

based on four key metrics: accuracy, precision, recall, and F1-score. These metrics were calculated separately 

for both the Diabetes and Normal classes to capture model performance across clinically significant categories. 

The report enables a nuanced evaluation of each model’s strengths and weaknesses, particularly with respect to 

diagnostic precision and error trade-offs. 

In the Diabetes class, the Adaptive Kernel Probability Model (AKPM) recorded the strongest results 

across all evaluation criteria. It achieved an accuracy of 0.875, precision of 0.833, recall of 0.769, and an F1-

score of 0.800. These scores indicate AKPM’s enhanced ability to detect true diabetic cases while minimizing 

false alarms accurately. Meanwhile, the Gaussian Mixture Model (GMM) achieved a recall of 0.661 and an F1-

score of 0.716, whereas Naïve Bayes had the lowest recall of 0.615 and an F1-score of 0.666 in this category. 

In evaluating performance on the Normal class, AKPM again demonstrated superiority, achieving a 

precision of 0.893, a recall of 0.926, and an F1-score of 0.909. The GMM model yielded strong but slightly lower 

values, including a recall of 0.911 and an F1-score of 0.878. Naïve Bayes trailed with moderate scores, reporting 

a recall of 0.889 and an F1-score of 0.857. These results underscore AKPM’s effectiveness in avoiding false 

positives while maintaining high detection sensitivity. 

Collectively, the comparative performance highlights AKPM’s consistent advantage in handling both 

diabetic and non-diabetic cases with balanced precision and recall. This reliability, especially in minimizing false 

negatives, reinforces the model’s clinical utility. Its nonparametric and adaptive nature makes it well-suited to 

heterogeneous clinical datasets, where conventional probabilistic models often fall short. The summarized 

evaluation metrics are presented in Table 2. 

Table 2. Classification report 

Model Class Accuracy Precision Recall F1-score 

Naïve Bayes 
Diabetes 

0.800 
0.727 0.615 0.666 

Normal 0.827 0.889 0.857 

GMM 
Diabetes 

0.830 
0.782 0.661 0.716 

Normal 0.848 0.911 0.878 

AKPM 
Diabetes 

0.875 
0.833 0.769 0.800 

Normal 0.893 0.926 0.909 

3.3 Discussion 

Evaluation of classification metrics across all models reveals that the Adaptive Kernel Probability 

Model (AKPM) consistently outperforms both Naïve Bayes and the Gaussian Mixture Model (GMM) in 

predicting diabetes from clinical data. In particular, AKPM achieves notable gains in recall and F1-score for the 

diabetic class, indicating its superior ability to detect true positives—a critical requirement in medical 

diagnostics, where false negatives can result in missed treatments. This enhanced performance is attributed to 

AKPM’s use of adaptive bandwidth kernel density estimation, which captures local data structures more 

effectively than the global assumptions embedded in GMM or the independence assumptions in Naïve Bayes. 

The discrepancy in recall values, 0.769 for AKPM, 0.661 for GMM, and 0.615 for Naïve Bayes, 

highlights the difficulty that traditional classifiers face in identifying minority class samples in imbalanced 

datasets. In contrast, AKPM balances sensitivity and specificity without sacrificing interpretability. The elevated 

F1-score of 0.800 for the diabetic class further validates the robustness of AKPM’s probabilistic estimates in 

sparse or overlapping regions of the feature space. Meanwhile, for the normal class, AKPM achieves an F1-score 

of 0.909, reinforcing its ability to reduce false positives, a desirable trait that helps avoid unnecessary 

interventions in non-diabetic individuals. 

Importantly, interpretability is preserved in AKPM’s probabilistic framework, in contrast to many high-

performance black-box models, such as deep neural networks. In clinical settings, the ability to trace predictions 

back to likelihood estimates derived from observed data contributes to trustworthiness and accountability. 

AKPM’s structure also allows it to adapt dynamically to varying data densities, a trait particularly valuable in 

medical datasets, where heterogeneity and outliers are common. 

These insights suggest that AKPM can serve not only as a diagnostic classifier but also as a transparent 

clinical decision-support tool. Its flexibility and explainability align well with the requirements for machine 

learning adoption in regulated healthcare environments, where both prediction accuracy and justification are 

essential. 

3.4 Comparative Evaluation and Result Analysis 

To validate AKPM's performance, a comparative evaluation was conducted against Naïve Bayes and 

GMM, using standard metrics detailed in Table 2. The analysis reveals that AKPM achieves the highest overall 

classification accuracy (0.875), followed by GMM (0.830) and Naïve Bayes (0.800). These results confirm 
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AKPM’s effectiveness in managing both majority and minority classes without relying on strong distributional 

assumptions. 

In the diabetic class, AKPM achieves a precision of 0.833 and a recall of 0.769, outperforming both 

GMM (precision: 0.782, recall: 0.661) and Naïve Bayes (precision: 0.727, recall: 0.615). This higher recall 

reflects AKPM's improved ability to identify patients with diabetes, thereby minimizing the clinical risk of false 

negatives. These improvements support prior findings that adaptive KDE methods can outperform traditional 

probabilistic classifiers in modeling clinical heterogeneity, as shown by Zhang et al. [17] and Li et al. [4]. 

Moreover, AKPM’s diabetic class F1-score of 0.800, compared with 0.716 (GMM) and 0.666 (Naïve 

Bayes), indicates a more balanced predictive performance. In the normal class, AKPM also achieves a precision 

of 0.893 and a recall of 0.926, thereby reducing the risk of overdiagnosis. These results align with Mackenzie et 

al. [12], who emphasized the importance of interpretable models that maintain strong predictive reliability in 

healthcare systems. 

Overall, the results not only close the gap outlined in the introduction—namely, the need for localized, 

adaptive, and interpretable probabilistic models—but also reinforce AKPM's viability as a scalable diagnostic 

tool across real-world medical applications. 

4. CONCLUSION 

This study introduces the Adaptive Kernel Probability Model (AKPM) as a compelling alternative to 

traditional probabilistic classifiers for diabetes detection. Empirical results on the Pima Indians Diabetes Dataset 

demonstrate that AKPM consistently outperforms conventional models such as Naïve Bayes and Gaussian 

Mixture Models across all key evaluation metrics, with notable improvements in reducing false negatives and 

improving the detection of true diabetic cases. Its adaptive kernel density estimation mechanism enables the 

model to flexibly represent local data structures, capture nonlinear feature interactions, and handle class 

imbalance without sacrificing interpretability—a critical requirement in clinical decision-making. Although the 

findings are promising, they are currently limited to a single benchmark dataset, underscoring the importance of 

future validation across diverse demographic groups, multiple medical centers, and real-world clinical 

environments. The model’s non-parametric and modular design supports straightforward integration into 

intelligent healthcare infrastructures, including clinical decision support systems and Internet of Medical Things 

(IoMT) platforms. Overall, AKPM offers a powerful combination of predictive performance, transparency, and 

scalability, reinforcing the relevance of adaptive probabilistic modeling for ethically grounded, data-driven 

medical diagnostics. 
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