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Diabetes mellitus poses a growing global health concern, particularly in low-
and middle-income countries where early detection remains limited,
demanding classification models that balance accuracy, interpretability, and
adaptability to heterogeneous clinical data. This study proposes and

Published February 11, 2026 ¢ o
evaluates the Adaptive Kernel Probability Model (AKPM), a novel

nonparametric probabilistic classifier designed to enhance diabetes
prediction by performing localized kernel density estimation with adaptive
bandwidth selection via k-nearest neighbors. Implemented and tested on the
Pima Indians Diabetes Dataset, AKPM outperformed conventional
classifiers—Naive Bayes and Gaussian Mixture Models (GMM)—across all
evaluation metrics, achieving 87.5% accuracy, 83.3% precision, 76.9%
recall, and an Fl-score of 80.0% for the diabetic class, alongside 89.3%
precision and 92.6% recall for the normal class. These results surpassed
GMM (83.0% accuracy, 71.6% Fl-score) and Naive Bayes (80.0%
accuracy, 66.6% Fl-score), confirming AKPM’s superior capability to
detect diabetic cases while minimizing false negatives. Offering transparent
posterior inference and a modular design, AKPM emerges as a reliable and
interpretable solution for clinical decision support systems and real-world
healthcare applications.
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1. INTRODUCTION

Diabetes mellitus represents one of the most pervasive metabolic disorders worldwide, with the
International Diabetes Federation reporting over 537 million adults affected in 2021, a figure expected to escalate
significantly by 2030 [1][2]. The prevalence of diabetes continues to rise sharply, especially across low- and
middle-income countries, where early screening and access to healthcare remain critically inadequate [3]. This
chronic disease, when undiagnosed or poorly managed, contributes to severe complications, including
cardiovascular disease, nephropathy, and lower-limb amputation, leading to both individual suffering and
significant socioeconomic strain [4]. Consequently, the economic burden of diabetes has been recognized as one
of the most substantial among non-communicable diseases, emphasizing the need for scalable, data-driven
diagnostic models capable of supporting early detection in resource-limited environments [5][6]. The ongoing
integration of machine learning in clinical diagnostics is transforming this paradigm, providing an avenue for
intelligent systems to assist medical professionals with reliable and adaptive decision support [7].Medical

Despite these advancements, traditional probabilistic classifiers, such as Naive Bayes, exhibit intrinsic
weaknesses due to the unrealistic assumption of feature independence, which often fails in clinical datasets where
physiological variables are correlated [8]. Similarly, Gaussian Mixture Models (GMMs) offer greater flexibility
but are constrained by parameter sensitivity and a tendency to overfit on imbalanced or small datasets [9].
Meanwhile, deep learning frameworks, including convolutional and ensemble architectures, demonstrate
remarkable predictive power but face limitations concerning data scarcity, interpretability, and computational
cost [10][11]. As a result, the search for models that balance accuracy, efficiency, and interpretability has become
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central to the development of reliable medical Al [12]. This ongoing challenge highlights a research gap: the
absence of models that can adaptively capture local probability structures in heterogeneous medical data.

The Adaptive Kernel Probability Model (AKPM) seeks to bridge this methodological divide by
introducing a non-parametric probabilistic framework that models class-conditional densities using adaptive
kernel density estimation (KDE). This approach dynamically adjusts the bandwidth parameter (h) according to
local data density, ensuring that probabilistic estimations remain sensitive to structural variations in the dataset
[13]. The model enhances classification robustness by addressing both feature interdependence and multimodal
distributions, outperforming standard Naive Bayes and GMM methods in terms of predictive stability and
generalization [14][15]. Importantly, AKPM maintains an interpretable mathematical structure that aligns with
probabilistic reasoning principles, making it a clinically explainable alternative to black-box neural architectures
[16].

Recent literature in adaptive machine learning for medical diagnostics supports the superiority of such
localized estimation approaches. For instance, Zhang et al. [17] demonstrated that adaptive bandwidth selection
in kernel-based models significantly improved sensitivity and specificity in cardiovascular and diabetes risk
prediction. Similarly, Li et al. [4]found that kernel-driven classifiers outperform linear probabilistic models when
addressing imbalanced medical datasets. Nonetheless, as highlighted by [16] Kiran et al. (2022), in a 33-year
bibliometric review, found that most diabetes prediction studies have not rigorously explored adaptive KDE
frameworks or probabilistic models beyond global Gaussian assumptions. Furthermore, [12] emphasized the
pressing need for transparent and interpretable Al models in healthcare to ensure clinical accountability. This
ongoing gap provides a strong rationale for exploring AKPM as a scalable, interpretable, and high-performing
alternative for real-world clinical data, particularly in binary classification tasks such as diabetes diagnosis.

This study aims to develop an Adaptive Kernel Probability Model (AKPM) to classify diabetes using
medical diagnostic data accurately. The research seeks to improve probabilistic estimation by integrating
adaptive bandwidth selection into kernel density estimation, thereby capturing localized data patterns more
effectively. It also aims to evaluate AKPM’s performance against conventional models such as Naive Bayes and
Gaussian Mixture Models through rigorous empirical testing. Additionally, the model’s robustness will be
assessed using metrics like accuracy, precision, recall, and F1-score on the Pima Indians Diabetes Dataset. By
doing so, the study strives to demonstrate AKPM’s superiority in interpretability, flexibility, and predictive
reliability for clinical decision support systems.

This research offers four key contributions to the field of medical probabilistic modeling. First, it
introduces a non-parametric classifier that leverages adaptive kernel density estimation to improve diabetes
detection accuracy. Second, the proposed AKPM framework eliminates the need for strong distributional
assumptions, making it well-suited to real-world clinical data. Third, it presents a detailed performance
comparison against established models, highlighting AKPM's robustness across diverse evaluation metrics.
Finally, the study provides a reproducible implementation and a methodological blueprint that support future
research in interpretable, scalable machine learning for healthcare.

2. METHODOLOGY
2.1 Dataset

The Pima Indians Diabetes Dataset, widely used in clinical predictive modeling, comprises anonymized
diagnostic records collected from female patients of Pima Indian heritage aged 21 and above. This dataset
contains 768 instances, each described by 8 numerical attributes reflecting relevant medical indicators, such as
glucose concentration, blood pressure, BMI, insulin level, and age. A binary outcome variable indicates whether
a patient has diabetes (1) or not (0), allowing for precise supervised classification. The class distribution is
moderately imbalanced, with approximately 35% of samples labeled as positive for diabetes and 65% labeled as
negative. Its structured format and widespread citation in health informatics research make it a standard
benchmark for evaluating probabilistic classifiers.

2.2 Preprocessing

Preprocessing steps were implemented to ensure the dataset's integrity and consistency before model
training. Missing values in features such as insulin and skin thickness were imputed using mean substitution to
preserve sample size without introducing significant bias. Subsequently, all numerical features were normalized
using min-max scaling to map values to the uniform range [0, 1], facilitating faster convergence and balanced
influence across dimensions. The dataset was then partitioned into training and test sets using an 80:20 stratified
split, preserving the original class distribution in both sets. These procedures collectively prepared the data for
robust and reproducible evaluation of the proposed probabilistic model.

2.3 Model AKPM
The Adaptive Kernel Probability Model (AKPM) provides a flexible probabilistic framework for

estimating class-conditional densities without imposing strict distributional assumptions. Unlike parametric
models that impose global Gaussian constraints, AKPM employs non-parametric Kernel Density Estimation
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(KDE) to compute the likelihood P(x | y) for a feature vector x given class y. The fundamental KDE
formulation is provided in Equation (1).

P(xly)——Z 1 Kn(x = %) 1)

Equation (1) evaluates the aggregated kernel contributions across all samples in class y, where N,
denotes the number of training samples belonging to class y, x; represents each sample, and K (-) is a kernel
function typically Gaussian with bandwidth h. The prior probability for each class y is computed using Equation
2.

PO) =7 @)

Where N is the total number of samples across all classes. As referenced in Equation (2), the prior
reflects the empirical frequency of each class within the dataset.

To enhance sensitivity to local data characteristics, AKPM incorporates adaptive bandwidth selection,
which dynamically adjusts the kernel bandwidth based on instance-level density. Instead of using a fixed global
bandwidth, the model computes an instance-specific bandwidth using the mean distance to the k-nearest
neighbors. This adaptive mechanism is mathematically defined in Equation (3).

h(x) =<3k llx —x | 3)

Where x; denotes the k-nearest neighbors of x and | - || represents Euclidean distance. As shown in
Equation (3), this approach allows the bandwidth to shrink in dense regions and expand in the sparse areas,
thereby ensuring more accurate probability estimation.

Following the computation of the likelihood and prior terms, the posterior probability P(y | x) is
derived using Bayes’ theorem, as presented in Equation (4).

P(y|x) = PO : (4)
0 P(x[y")Por"

Equation (4) provides the foundation for probabilistic classification, where the predicted class
corresponds to the class y that yields the highest posterior probability.

By leveraging localized density information through adaptive kernels, as formalized in Equations (1)
and (4), AKPM enables precise modeling of nonlinear decision boundaries in complex datasets. This capability
makes the framework particularly effective for medical applications where inter-feature correlations,
distributional heterogeneity, and class imbalance are prevalent. Figure 1 illustrates the overall AKPM workflow,
including preprocessing, adaptive bandwidth computation, density estimation, and posterior inference.
Collectively, these components enable AKPM to outperform conventional static kernel models by adapting to
the nuanced structure of real-world clinical data.

As illustrated in Figure 1, the AKPM model architecture involves four main stages: normalization and
imputation of raw clinical data, computation of local bandwidths for kernel density estimation, evaluation of
class-conditional likelihoods, and final classification based on posterior probabilities.
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Figure 1. AKPM workflow diagram
2.4 Baseline Models for Comparison

To rigorously evaluate the effectiveness of the proposed Adaptive Kernel Probability Model (AKPM),
two widely used probabilistic classifiers are selected as baselines: Naive Bayes (NB) and Gaussian Mixture
Model (GMM). These models are chosen for their historical significance, mathematical simplicity, and frequent
use in medical classification literature, including in diabetes detection.
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The Naive Bayes classifier operates under the fundamental assumption of conditional independence
among features given the class label. While this assumption yields a highly computationally efficient and
interpretable model, it often fails in real-world medical datasets, where clinical variables—such as glucose,
insulin, BMI, and blood pressure—are statistically correlated. This simplification can reduce the classifier’s
discriminative power, particularly when subtle feature interactions carry necessary diagnostic signals.
Nevertheless, its fast convergence and low memory footprint make NB a popular choice for low-latency health
prediction systems and as a baseline benchmark.

In contrast, the Gaussian Mixture Model offers greater flexibility by modeling each class's feature
distribution as a mixture of multiple Gaussian components. It estimates the probability density P(x | y) by
optimizing both the component means and covariances through the Expectation-Maximization (EM) algorithm.
GMMs can capture multimodal distributions in the data, enabling them to represent class variability better than
Naive Bayes. However, it remains a parametric model, assuming that a combination of Gaussian forms can
approximate the underlying data structure. Furthermore, GMMs are sensitive to parameter initialization and can
easily overfit when applied to imbalanced or small datasets—a common scenario in clinical data settings.

Despite their widespread application, both Naive Bayes and GMMs rely on global assumptions about
data distribution, making them less responsive to local variations in density and feature interactions. In contrast,
AKPM employs an adaptive, instance-based estimation approach that dynamically adjusts the kernel bandwidth
based on the local structure of the feature space. This distinction enables AKPM to remain robust in the presence
of nonlinear decision boundaries, local heterogeneity, and irregular feature distributions, thereby offering a
significant methodological advance over classical baselines.

By benchmarking AKPM against NB and GMM using the same preprocessing pipeline and evaluation
metrics, this study aims to demonstrate the relative benefits of localized probabilistic modeling in clinical
prediction tasks—particularly for imbalanced datasets such as the Pima Indians Diabetes Dataset.

2.5 Evaluation Metrics

To comprehensively assess the performance of the proposed Adaptive Kernel Probability Model
(AKPM) and its baseline counterparts, we employ a suite of standard classification evaluation metrics derived
from the confusion matrix. Accuracy measures the proportion of correct predictions across all classes. It is
defined in Equation (5).

Accuracy = S - ©)
TP+FP+TN+FN

While accuracy is informative in balanced datasets, it can be misleading when applied to imbalanced
data such as the Pima Indians Diabetes Dataset, where the majority of samples belong to the negative class.
Precision quantifies the proportion of positive predictions that are actually correct, offering insight into the
reliability of positive classifications. It is formally defined in Equation (6).

e ©)

TP+FP

Precision =

This metric is critical when false positives incur costs, such as unnecessary medical interventions.
Recall, also referred to as sensitivity or true positive rate, measures the proportion of actual positive cases
correctly identified by the model. It is especially critical in healthcare settings, where false negatives can lead to
missed diagnoses. The recall formula is presented in Equation (7).

Recall = L )
TP+FN

Fl-score serves as the harmonic mean of precision and recall, providing a single balanced metric that
accounts for both false positives and false negatives. It is especially valuable for evaluating models on
imbalanced datasets, where accuracy alone is insufficient. The F1-score is defined as (8).

Precisionx Recall ( 8)
Precision+ Recall

Each of these metrics is computed for all models and compiled into a comprehensive classification
report, enabling consistent, interpretable comparisons of performance across classifiers. Given the class
imbalance inherent in the Pima Indians Diabetes Dataset where negative cases outnumber positive ones metrics
such as recall and F1-score are prioritized. A high recall value indicates that the model effectively identifies
diabetic patients, while the F1-score ensures this detection does not come at the cost of excessive false positives.

By evaluating AKPM and the baseline models from a multi-metric perspective, the analysis ensures
that performance is understood in a clinically meaningful, risk-sensitive context, particularly relevant for disease
detection systems in which misclassification consequences are asymmetric.

F1-score =2 X
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3. RESULTS AND DISCUSSION
3.1 Confusion Matrix

The confusion matrix provides an interpretable breakdown of classification outcomes by enumerating
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). In the context of diabetes
prediction, this matrix becomes critical for understanding how well a model can distinguish between diabetic
and non-diabetic individuals a distinction with direct clinical implications. Table 1 below summarizes the
confusion matrix components for the three evaluated models: Naive Bayes, Gaussian Mixture Model (GMM),
and the proposed Adaptive Kernel Probability Model (AKPM).

Table 1. Confusion matrix

Model TP FP TN FN
Naive Bayes 40 15 120 25
Gaussian Mixture 43 12 123 22
AKPM
(Proposed) 50 10 125 15

The Naive Bayes classifier, while computationally simple and fast, performs relatively poorly at
identifying diabetic cases. With 25 false negatives, it fails to detect one in three actual diabetic patients, which
is an unacceptable risk in medical applications. Furthermore, its 15 false positives may lead to unnecessary
psychological or medical follow-ups for healthy individuals.

The Gaussian Mixture Model improves upon Naive Bayes by reducing both FP and FN counts (to 12
and 22, respectively). This suggests greater capability to capture non-Gaussian and overlapping distributions,
particularly through its mixture-based likelihood estimation. However, GMM still makes more than 20
classification errors per class, indicating insufficient adaptation to local feature behavior, particularly in boundary
regions.

In contrast, the proposed AKPM demonstrates superior classification balance, achieving the highest
true positives (50) and true negatives (125) among all models tested. It also has the lowest false-positive (10)
and significantly reduced false-negative (15) counts. These outcomes reflect AKPM’s ability to: Accurately
detect positive diabetic cases (high recall), Avoid mislabeling healthy individuals (high precision), Adapt to local
density patterns via kernel bandwidth optimization, Overcome the rigid distributional assumptions of NB and
GMM.

Such a low false negative rate (15) is significant in diabetes screening, where undetected cases can lead
to delayed treatment and long-term complications. The false-positive rate, while present, remains manageable
within acceptable clinical screening thresholds.

This analysis confirms that AKPM not only improves overall classification performance but also aligns
with clinical priorities, namely, minimizing the risk of undetected diabetes while preserving the trustworthiness
of positive predictions. The confusion matrix thus provides foundational evidence of AKPM’s practical utility
in medical diagnostic decision-support systems, particularly under conditions of class overlap and multimodal
distributions.

As shown in Figure 2, AKPM achieved the highest true-positive count and the lowest false-negative
rate among the tested models, underscoring its strong sensitivity and clinical reliability.
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Figure 2. Confusion matrix — AKPM
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3.2 Classification Report

To further assess the predictive reliability of each model, a detailed classification report was compiled
based on four key metrics: accuracy, precision, recall, and F1-score. These metrics were calculated separately
for both the Diabetes and Normal classes to capture model performance across clinically significant categories.
The report enables a nuanced evaluation of each model’s strengths and weaknesses, particularly with respect to
diagnostic precision and error trade-offs.

In the Diabetes class, the Adaptive Kernel Probability Model (AKPM) recorded the strongest results
across all evaluation criteria. It achieved an accuracy of 0.875, precision of 0.833, recall of 0.769, and an F1-
score of 0.800. These scores indicate AKPM’s enhanced ability to detect true diabetic cases while minimizing
false alarms accurately. Meanwhile, the Gaussian Mixture Model (GMM) achieved a recall of 0.661 and an F1-
score of 0.716, whereas Naive Bayes had the lowest recall of 0.615 and an F1-score of 0.666 in this category.

In evaluating performance on the Normal class, AKPM again demonstrated superiority, achieving a
precision of 0.893, arecall 0of 0.926, and an F1-score of 0.909. The GMM model yielded strong but slightly lower
values, including a recall of 0.911 and an F1-score of 0.878. Naive Bayes trailed with moderate scores, reporting
a recall of 0.889 and an F1-score of 0.857. These results underscore AKPM’s effectiveness in avoiding false
positives while maintaining high detection sensitivity.

Collectively, the comparative performance highlights AKPM’s consistent advantage in handling both
diabetic and non-diabetic cases with balanced precision and recall. This reliability, especially in minimizing false
negatives, reinforces the model’s clinical utility. Its nonparametric and adaptive nature makes it well-suited to
heterogeneous clinical datasets, where conventional probabilistic models often fall short. The summarized
evaluation metrics are presented in Table 2.

Table 2. Classification report

Model Class Accuracy Precision Recall Fl-score
Naive Bayes Diabetes 0.800 0.727 0.615 0.666
Normal 0.827 0.889 0.857
Diabetes 0.782 0.661 0.716
OMM Normal %0 os4s 0911 0878
Diabetes 0.833 0.769 0.800
AKPM Normal 0.875 0.893 0.926 0.909

3.3 Discussion

Evaluation of classification metrics across all models reveals that the Adaptive Kernel Probability
Model (AKPM) consistently outperforms both Naive Bayes and the Gaussian Mixture Model (GMM) in
predicting diabetes from clinical data. In particular, AKPM achieves notable gains in recall and F1-score for the
diabetic class, indicating its superior ability to detect true positives—a critical requirement in medical
diagnostics, where false negatives can result in missed treatments. This enhanced performance is attributed to
AKPM’s use of adaptive bandwidth kernel density estimation, which captures local data structures more
effectively than the global assumptions embedded in GMM or the independence assumptions in Naive Bayes.

The discrepancy in recall values, 0.769 for AKPM, 0.661 for GMM, and 0.615 for Naive Bayes,
highlights the difficulty that traditional classifiers face in identifying minority class samples in imbalanced
datasets. In contrast, AKPM balances sensitivity and specificity without sacrificing interpretability. The elevated
F1-score of 0.800 for the diabetic class further validates the robustness of AKPM’s probabilistic estimates in
sparse or overlapping regions of the feature space. Meanwhile, for the normal class, AKPM achieves an F1-score
of 0.909, reinforcing its ability to reduce false positives, a desirable trait that helps avoid unnecessary
interventions in non-diabetic individuals.

Importantly, interpretability is preserved in AKPM’s probabilistic framework, in contrast to many high-
performance black-box models, such as deep neural networks. In clinical settings, the ability to trace predictions
back to likelihood estimates derived from observed data contributes to trustworthiness and accountability.
AKPM’s structure also allows it to adapt dynamically to varying data densities, a trait particularly valuable in
medical datasets, where heterogeneity and outliers are common.

These insights suggest that AKPM can serve not only as a diagnostic classifier but also as a transparent
clinical decision-support tool. Its flexibility and explainability align well with the requirements for machine
learning adoption in regulated healthcare environments, where both prediction accuracy and justification are
essential.

3.4 Comparative Evaluation and Result Analysis

To validate AKPM's performance, a comparative evaluation was conducted against Naive Bayes and
GMM, using standard metrics detailed in Table 2. The analysis reveals that AKPM achieves the highest overall
classification accuracy (0.875), followed by GMM (0.830) and Naive Bayes (0.800). These results confirm
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AKPM’s effectiveness in managing both majority and minority classes without relying on strong distributional
assumptions.

In the diabetic class, AKPM achieves a precision of 0.833 and a recall of 0.769, outperforming both
GMM (precision: 0.782, recall: 0.661) and Naive Bayes (precision: 0.727, recall: 0.615). This higher recall
reflects AKPM's improved ability to identify patients with diabetes, thereby minimizing the clinical risk of false
negatives. These improvements support prior findings that adaptive KDE methods can outperform traditional
probabilistic classifiers in modeling clinical heterogeneity, as shown by Zhang et al. [17] and Li et al. [4].

Moreover, AKPM’s diabetic class F1-score of 0.800, compared with 0.716 (GMM) and 0.666 (Naive
Bayes), indicates a more balanced predictive performance. In the normal class, AKPM also achieves a precision
0f 0.893 and a recall of 0.926, thereby reducing the risk of overdiagnosis. These results align with Mackenzie et
al. [12], who emphasized the importance of interpretable models that maintain strong predictive reliability in
healthcare systems.

Overall, the results not only close the gap outlined in the introduction—namely, the need for localized,
adaptive, and interpretable probabilistic models—but also reinforce AKPM's viability as a scalable diagnostic
tool across real-world medical applications.

4. CONCLUSION

This study introduces the Adaptive Kernel Probability Model (AKPM) as a compelling alternative to
traditional probabilistic classifiers for diabetes detection. Empirical results on the Pima Indians Diabetes Dataset
demonstrate that AKPM consistently outperforms conventional models such as Naive Bayes and Gaussian
Mixture Models across all key evaluation metrics, with notable improvements in reducing false negatives and
improving the detection of true diabetic cases. Its adaptive kernel density estimation mechanism enables the
model to flexibly represent local data structures, capture nonlinear feature interactions, and handle class
imbalance without sacrificing interpretability—a critical requirement in clinical decision-making. Although the
findings are promising, they are currently limited to a single benchmark dataset, underscoring the importance of
future validation across diverse demographic groups, multiple medical centers, and real-world clinical
environments. The model’s non-parametric and modular design supports straightforward integration into
intelligent healthcare infrastructures, including clinical decision support systems and Internet of Medical Things
(IoMT) platforms. Overall, AKPM offers a powerful combination of predictive performance, transparency, and
scalability, reinforcing the relevance of adaptive probabilistic modeling for ethically grounded, data-driven
medical diagnostics.
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