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 Accurate pathloss (PL) modeling is critical for 4G-LTE network planning in 

complex urban environments like Central Tarakan, Indonesia. This study 

presents a Python-based, open-source implementation of Particle Swarm 

Optimization (PSO) to calibrate three conventional PL models, Okumura-

Hata, SUI, and Ericsson 9999, using real drive-test data. Initial RMSE values 

exceeded 50 dB, revealing severe inaccuracies under heterogeneous terrain. 

PSO optimization dramatically improved accuracy: RMSE reduced to 5.98 

dB (Okumura-Hata, 89.44% improvement), 9.83 dB (SUI, 84.03%), and 

6.44 dB (Ericsson 9999, 91.32%). The optimized Okumura-Hata model 

achieved the highest reliability, with 88.89% of measurement points meeting 

the <8 dB threshold and the lowest standard deviation (1.71 dB). Ericsson 

9999 attained the lowest minimum RMSE (0.06 dB), showcasing 

exceptional potential under favorable conditions. PSO converged rapidly 

within 50 iterations, and sensitivity analysis confirmed that standard 

parameters (ω = 0.5–0.7, c₁ = c₂ = 1.8–2.2) suffice for robust calibration, 

eliminating need for fine-tuning. Results demonstrate that real-world 

propagation deviates significantly from classical logarithmic assumptions, 

validating the necessity of data-driven, site-specific optimization. The fully 

open-source framework — built with NumPy, Pandas, and Matplotlib — 

offers a practical, scalable solution for intelligent radio planning in dynamic 

urban landscapes. 
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1. INTRODUCTION 

Wireless communication systems are rapidly evolving to meet the growing demand for fast, reliable, 

and ubiquitous data access. Simultaneously, they play a pivotal role in advancing the United Nations’ 2030 

Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation, and Infrastructure) and SDG 

11 (Sustainable Cities and Communities) [1]. A critical challenge in the design and optimization of these systems 

lies in modeling electromagnetic (EM) wave propagation, where signal strength typically degrades with 

increasing distance between transmitter and receiver due to complex environmental phenomena such as 

scattering, diffraction, and absorption [2][3][4][5][6]. 

A key parameter in wireless network planning is pathloss (PL), defined as the reduction in signal power 

during propagation from transmitter to receiver [7][8][9][10][11]. Research by [12] demonstrates that PL is 

influenced by multiple factors, including operating frequency, atmospheric conditions, terrain characteristics, 

and transmission distance. Traditional empirical propagation models, such as Okumura-Hata, SUI, and Ericsson 

9999, are widely used for PL estimation. However, as noted by [7] and [13], their accuracy significantly 

diminishes in geographically complex or localized environments due to their deterministic nature and limited 

adaptability to site-specific conditions. 

Recent advances in machine learning have introduced more flexible and data-driven alternatives for 

path loss prediction. Among these, Particle Swarm Optimization (PSO) has emerged as a particularly promising 

approach, owing to its simplicity, low computational overhead, and inherent capability for parallel search [14], 

[15]. While [13] have successfully applied PSO to optimize path loss models in urban settings, there remains a 

significant gap in literature regarding the adaptation of established empirical models, specifically Okumura-Hata, 

SUI, and Ericsson 9999, for 4G-LTE networks in regions characterized by unique geographical features, such as 

Central Tarakan. 
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This study addresses this gap by developing a novel, PSO-optimized path loss prediction model tailored 

to the environmental conditions of Central Tarakan. Our primary contributions include: (1) the design and 

implementation of an adaptive path loss model calibrated using PSO, and (2) a comprehensive performance 

evaluation comparing the proposed model against conventional propagation models under real-world 

measurement data. The results aim to provide a more accurate, locally optimized framework for network 

planning in heterogeneous geographic contexts. 

2. RESEARCH METHODS 

This study adopts a quantitative approach to optimize path loss (PL) models for 4G-LTE networks using 

the Particle Swarm Optimization (PSO) algorithm. The research methodology is structured into four distinct 

phases: (1) acquisition of field measurement data through drive tests, (2) simulation of conventional empirical 

PL models (e.g., Okumura-Hata, SUI, and Ericsson 9999), (3) optimization of model parameters via the PSO 

algorithm, and (4) comparative performance evaluation of the optimized models against both measured data and 

conventional predictions. 

2.1 Field Measurement and Data Acquisition Location 

Signal quality measurements were conducted along Jl. Yos Sudarso in Tarakan City, a densely built 

urban area with moderate traffic. Data was collected via drive test using smartphones with G-Mon Pro 1.8.6 

under clear weather and at 30 km/h to minimize interference and Doppler effects, following [16]. The 

measurement parameters are summarized in Table 1. 

Table 1. Parameters used in RF measurement 

Parameters Value 

Transmit power (dBm) 38 

Transmitting antenna gain (dBi) 18 

Receive antenna gain (dBi) 2 

Transmit antenna height (m) 30 

Mobile station antenna height (m) 1.5 

Band of operation   LTE Band 1, 3, 40 
 

A drive test is a standardized field measurement technique used to evaluate the real-world performance 

of mobile networks by quantifying key Quality of Service (QoS) metrics. In this study, drive test data were 

collected, including Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and 

geographic coordinates, supplemented by cell identity and position data obtained from CellMapper. While RSRP 

measures the power level of the LTE reference signals alone (in dBm), the Received Signal Strength Indicator 

(RSSI) reflects the total received power across the entire bandwidth—including interference and thermal noise. 

RSRQ, calculated as the ratio of RSRP to RSSI, provides a more comprehensive assessment of signal quality by 

accounting for both signal strength and interference levels, thereby offering a better indicator of user-perceived 

network performance [17][18][19]. The classification of LTE signal quality levels based on these metrics is 

summarized in Table 2 [20][21][22][23][24][25]. 

Table 2. Assessment of 4G-LTE signal quality 

Classification RSRP (dBm) RSRQ (dB) RSSI (dBm) 

Excellent > -80 > -10 > -79 

Good -80 to -90 -10 to -15 -80 to -89 

Marginal -90 to -100 -15 to -20 -90 to -100 

Poor < -100 < -20 < -100 
 

Following the data collection phase, the next step involves the calculation of pathloss (PL), defined as 

the attenuation of signal power during propagation from the transmitter to the receiver in a wireless medium. 

Pathloss is influenced by multiple factors, including transmission distance, physical obstructions (e.g., buildings, 

terrain), and environmental conditions such as atmospheric absorption, foliage density, and humidity. As radio 

waves propagate through space, they experience progressive power degradation due to fundamental propagation 

mechanisms—including free-space spreading, shadowing, diffraction, reflection, refraction, scattering, and 

absorption [26]. These effects collectively reduce the received signal strength below the transmitted level, 

necessitating accurate modeling for reliable network planning. The magnitude of path loss can be quantified 

using Equation (1) [27][28][29]. 

𝑃𝐿 (𝑑𝐵)  =  𝑃𝑇𝑋 + 𝐺𝑇𝑋 + 𝐺𝑅𝑋 − 𝑃𝑅𝑋  (1) 

where, PTX is the transmitter power in dBm, GTX is the transmitter antenna gain in dB, GRX is the receiver antenna 

gain in dB, and PRX is the received power at the receiver in dBm. 
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The collected pathloss (PL) data was georeferenced and visualized using Google Earth Pro to determine 

the Euclidean distances between each measurement point and the corresponding eNodeB. Python, leveraging 

libraries such as Matplotlib and GeoPandas, was employed for spatial analysis and visualization, generating a 

two-dimensional PL distribution map that illustrates the trend of signal attenuation as a function of distance from 

the base station. To estimate PL values in unmeasured locations, a 3D kriging interpolation model was applied, 

accounting for spatial autocorrelation across the study area. Additionally, a standard deviation map was 

generated to quantify spatial variability in PL, thereby identifying regions of high signal fluctuation—likely 

attributable to multipath interference, dense obstructions, or heterogeneous terrain. The complete data collection 

and processing workflow is summarized in Figure 1. 

2.2 Pathloss Modeling 

Following data processing, the next phase involves modeling and characterizing pathloss (PL) using 

established empirical propagation models. This study implements and simulates three widely adopted 

conventional models: Okumura-Hata, Stanford University Interim (SUI), and Ericsson 9999. The simulated PL 

values are then compared against the field-measured data to evaluate their accuracy under the specific 

environmental conditions of the study area. This comparative analysis enables the identification of systematic 

biases and discrepancies, offering critical insights into how local terrain features—including building density 

and height, vegetation coverage, and topographic variability—influence signal propagation. The ultimate 

objective of this step is not merely to assess model performance, but to inform the subsequent optimization 

process by highlighting the environmental factors that most significantly deviate from idealized assumptions in 

classical models. 

 

Figure 1. Workflow diagram of data collection 

2.2.1 Okumura-Hata PL Model 

The Okumura-Hata model is a PL prediction method originally developed based on signal strength 

measurements conducted in Tokyo, Japan [30]. This model is designed for estimating propagation loss in systems 

operating within the frequency range of 150 to 1500 MHz, with base station heights varying between 30 and 200 

meters, and transmission distances ranging from 1 to 20 kilometers [20], [30]. The mathematical formulations 

for this PL model, tailored for urban and rural environments, are presented in Equations (2)-(11). 

For urban area 

𝑃𝐿𝑈𝑟𝑏𝑎𝑛 = 𝐴 + 𝐵 𝑙𝑜𝑔10(𝑑) − 𝐸 (2) 

For suburban area 

𝑃𝐿𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛 = 𝐴 + 𝐵 𝑙𝑜𝑔10(𝑑) − 𝐶  (3) 

For open area 

𝑃𝐿𝑂𝑝𝑒𝑛 𝐴𝑟𝑒𝑎 = 𝐴 + 𝐵 𝑙𝑜𝑔10(𝑑) − 𝐷 (4) 

with 

𝐴 =  69,55 + 26,16 𝑙𝑜𝑔10(𝑓𝑐) − 13,82 𝑙𝑜𝑔10(ℎ𝑏)  (5) 

𝐵 =  44,9 − 6,55 𝑙𝑜𝑔10(ℎ𝑏) (6) 

𝐶 =  2( 𝑙𝑜𝑔10(
𝑓𝑐

28⁄ ))2 + 5,4 (7) 

𝐷 =  4,78 (𝑙𝑜𝑔10(𝑓𝑐))2 + 18,33 𝑙𝑜𝑔10(𝑓𝑐) − 40,94 (8) 

where, fc represents the carrier frequency in MHz, d denotes the distance between the transmitter and receiver in 

meters, hb indicates the eNodeB antenna height in meters, and hr refers to the receiver antenna height in meters. 

http://avitec.itda.ac.id/
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In urban areas, the value of E is determined using different formulas depending on the city type and the 

operating carrier frequency. 

For big cities and fc ≥ 300 MHz, 

𝐸 =  3,2 (𝑙𝑜𝑔10(11,7554(ℎ𝑟)))2 − 4,97 (9) 

For big cities and fc < 300 MHz 

𝐸 =  8,29 (𝑙𝑜𝑔10(1,54(ℎ𝑟)))2 − 1,1 (10) 

For medium to small cities 

𝐸 = (1,1 (𝑙𝑜𝑔10(𝑓𝑐) − 0,7)ℎ𝑟 − (1,56(𝑙𝑜𝑔10(𝑓𝑐) − 0,8) (11) 

2.2.2 Stanford University Interim (SUI) PL Model 

The Stanford University Interim (SUI) pathloss propagation model is an enhanced version of the Hata 

model, incorporating correction parameters specifically designed for frequencies exceeding 1900 MHz. The SUI 

model was introduced as a practical solution for planning WiMAX networks operating in the 3.5 GHz frequency 

band [31]. According to research conducted by [32], the terrain types in the SUI model are categorized into three 

classes: Terrain A, Terrain B, and Terrain C. 

Equation (12) [32] presents the mathematical formulation of the SUI pathloss model. The variables 

involved include: Φ as the free-space pathloss (dB), γ as the path loss exponent, d₀ as the baseline distance (100 

m), Xf as the frequency correction component (MHz), Xh as the tower height adjustment factor (m), and S as the 

shadowing component. The value of Φ at a distance of 1 meter is defined in Equation (13). Additionally, the 

parameter γ is calculated using Equation (14), where the constants a, b, and c are listed in Table 3. The shadowing 

factor S is determined based on Equation (15). 

Table 3. Variations in terrain parameters for the SUI model 

Category A b C  

A 4.6 0.0075 12.6 5.2 

B 4.0 0.0065 17.1 5.2 

C 3.6 0,005 20 6.6 

𝑃𝐿 =  + 10 𝛾 𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋𝑓 + 𝑋ℎ + 𝑆            for 𝑑 >  𝑑0  (12) 

𝐴 = 20 𝑙𝑜𝑔10 (
4𝜋𝑑0

𝜆
) (13) 

𝛾 = 𝑎 − 𝑏ℎ𝑏 + (
𝑐

ℎ𝑏
) (14) 

𝑆 = 0,65 (𝑙𝑜𝑔10(𝑓𝑐))2 − 1,3 𝑙𝑜𝑔10(𝑓𝑐) + 𝑎 (15) 

Terrain-dependent adjustments for frequency and base station antenna height are expressed through 

correction factors presented in Equations (16) and (17). 

𝑋𝑓 = 6 𝑙𝑜𝑔10 (
𝑓𝑐

2000
) (16) 

𝑋ℎ = −10,8 𝑙𝑜𝑔10 (
ℎ𝑟

2000
)                    for categories A and B (17) 

𝑋ℎ = −20 𝑙𝑜𝑔10 (
ℎ𝑟

2000
)                       for category C (18) 

2.2.3 Ericsson 9999 PL Model 

The Ericsson 9999 PL model was introduced as an enhanced version of the Okumura-Hata approach, 

incorporating adjustments for diverse propagation conditions. It is formulated in Equation (19), with the 

environment-specific coefficients αₙ provided in Table 4 [33]. 

𝑃𝐿 = 𝛼0 + 𝛼1 𝑙𝑜𝑔10(𝑑) + 𝛼2 𝑙𝑜𝑔10(ℎ𝑏) + 𝛼3 𝑙𝑜𝑔10(ℎ𝑏) 𝑙𝑜𝑔10(𝑑) − 3,2 [𝑙𝑜𝑔10(11,75ℎ𝑟)2] +
44,9 𝑙𝑜𝑔10(𝑓𝑐) − 4,78(𝑙𝑜𝑔10(𝑓𝑐)) 2 (19) 

The evaluation stage followed the simulation of conventional PL models, using the Root Mean Square 

Error (RMSE) as the performance indicator. RMSE reflects the average discrepancy between actual measured 

path loss (PLₘ) and model-predicted values (PLᵣ). A smaller RMSE signifies better model precision. In wireless 

propagation studies, a model is generally deemed reliable when its RMSE does not exceed 8 dB [34]. 

Table 4. Diverse terrain conditions applied in the Ericsson model 

Condition α0 α1 α2 α3 

Rural 45.95 100.6 -12 0.1 

Suburban 43.20 68.63 12 0.1 

Urban 36.20 30.20 12 0.1 
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2.2.4 Particle-Swarm-Optimization (PSO) 

Many existing path loss (PL) models suffer from limited accuracy due to their generalized, 

environment-agnostic formulations, which fail to account for site-specific propagation conditions. As a result, 

these models often exhibit significant performance degradation when applied in real-world urban, suburban, or 

heterogeneous terrain environments. To overcome this limitation, this study employs the Particle Swarm 

Optimization (PSO) algorithm to adaptively calibrate conventional PL models using field-measured data, thereby 

tailoring their parameters to local environmental and frequency characteristics. Originally proposed by Kennedy 

and Eberhart in 1995, PSO is a population-based stochastic optimization technique inspired by the coordinated 

motion of social organisms such as bird flocks or fish schools. In PSO, each particle represents a potential 

solution and iteratively updates its position and velocity based on two key influences: its own best-known 

position (personal best) and the best position discovered by the entire swarm (global best) [14], [39]. This 

adaptive search mechanism enables efficient convergence toward optimal model parameters that better reflect 

actual propagation behavior under complex real-world conditions. 

In the PSO algorithm, each particle is identified by an index i = 1, 2, ..., Np and has a dimensionality of 

j = 1, 2, ..., Nd. During each iteration, particles update their velocity and position within the search space based 

on predefined mathematical rules. The updated velocity of a particle is governed by Equation (20), while its new 

position is determined using Equation (21). The modified velocity of the i-th particle at the (t + 1)-th iteration is 

denoted as 𝑣𝑖,𝑗
(𝑡+1)

, and its corresponding position is represented as 𝑋𝑖,𝑗
(𝑡+1)

. The initial values for velocity and 

position are expressed as 𝑣𝑖,𝑗
(𝑡)

 and 𝑋𝑖,𝑗
(𝑡)

, respectively. Each particle maintains a record of its best-achieved position 

so far, referred to as the personal best 𝑃𝑏𝑒𝑠𝑡 𝑖,𝑗
(𝑡)

, and also responds to the global best position found by the entire 

swarm, denoted as 𝐺𝑏𝑒𝑠𝑡 𝑗 
(𝑡)

. The updates to both velocity and position are influenced by two acceleration 

constants: c₁ and c₂. In this implementation, c₁ is set to 1, and c₂ is calculated as 4 – c₁, representing the cognitive 

and social behavior of the particles, respectively. Additionally, two random numbers, rd1 and rd2, uniformly 

distributed between 0 and 1, are introduced to incorporate stochasticity into the search process. This allows the 

particles to explore the solution space in a dynamic and adaptive manner [35][36]. 

. 

𝑣̅𝑖,𝑗
(𝑡+1)

 = 𝑣̅𝑖,𝑗
(𝑡)

+ 𝑐1 𝑟𝑑1[𝑃̅𝑏𝑒𝑠𝑡 𝑖,𝑗
 (𝑡)

− 𝑋̅𝑖,𝑗
(𝑡)

] +  𝑐2𝑟𝑑2[𝐺̅𝑏𝑒𝑠𝑡 𝑗
 (𝑡)

− 𝑋̅𝑖,𝑗
(𝑡)

] (20) 

𝑋𝑖,𝑗
(𝑡+1)

= 𝑋̅𝑖,𝑗
(𝑡)

+ 𝑣̅𝑖,𝑗
(𝑡+1)

 (21) 

As noted by [37], the inertia weight (𝜔) is an essential parameter in the PSO algorithm, as it controls 

the trade-off between global exploration and local exploitation by adjusting the impact of Pgbest and Pxbest. 

Equation (22) is used to compute the inertia weight, with variables defined as follows 𝜔t is inertia weight at the 

current iteration t, T denotes maximum number of iterations, and t as current iteration step. 

𝜔𝑡 = 𝜔𝑚𝑎𝑥
𝜔𝑚𝑎𝑥− 𝜔𝑚𝑖𝑛 

𝑇
𝑡  (22) 

3. RESULTS AND DISCUSSION 

3.1 Geospatial Mapping of 4G-LTE Coverage Performance in Central Tarakan 

Field measurements of 4G-LTE network performance were conducted along a ±2 km corridor of Jl. 

Yos Sudarso in Central Tarakan. The results reveal that 62.94% of measurement points exhibited excellent 

Reference Signal Received Power (RSRP) (> –80 dBm), 31.98% were classified as good (–90 to –80 dBm), and 

only 5.08% were marginal (≤ –90 dBm). In contrast, RSRQ (Reference Signal Received Quality) showed 

significantly lower performance: only 5.58% of locations achieved excellent quality (> –10 dB), 51.78% were 

rated as good (–15 to –10 dB), while a substantial 42.64% fell into the marginal range (≤ –15 dB). This 

discrepancy—strong RSRP coupled with low RSRQ—indicates that while signal strength is generally adequate, 

interference or network congestion is significantly degrading signal quality and, consequently, user-perceived 

reliability. The spatial distributions of RSRP and RSRQ across the study area are visualized in Figure 2 and 

summarized quantitatively in Table 5. 

Table 5. Spatial distribution of 4G-LTE network performance on Jl. Yos Sudarso, Tarakan 

Quality RSRP (dBm) Percentage (%) RSRQ (dB) Percentage (%) 

Excellent > -80 62,94 > -10 5.58 

Good -80 to -90 31,98 -10 to -15 51.78 

Marginal -90 to -100 5,08 -15 to -20 42.64 

Poor < -100 0 < -20 0 
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Figure 2. Mapping of RSRP levels across the research site for 4G-LTE network 
 

Pathloss (PL) values, computed from RSRP measurements using Equation (1), ranged from 126 dB to 

157 dB, with a mean value of 136.30 dB and a standard deviation of 7.65 dB, indicating a relatively homogeneous 

spatial distribution across the study area. Figure 3(a) presents the 3D Kriging interpolation surface of PL, where 

orange-to-red regions correspond to moderate pathloss (~131 dB), while blue zones represent high attenuation 

(>150 dB). Figure 3(b) reveals a general positive correlation between PL and distance from the eNodeB, 

consistent with free-space propagation trends. However, several measurement points located close to the base 

station exhibit unexpectedly high PL values—attributable to non-line-of-sight (NLOS) conditions, signal 

blockage by buildings and dense vegetation, and multipath effects. These anomalies align with findings reported 

in [23] and [37]–[38], which emphasize substantial signal degradation under NLOS environments due to 

scattering, diffraction, and absorption. The observed spatial PL patterns provide critical empirical context for 

evaluating the performance of conventional propagation models prior to their calibration via PSO-based 

optimization, as detailed in the following section. 

 

Figure 3. (a) Spatial distribution of PL using 3D Kriging on Jl. Yos Sudarso and  

(b) PL variation with respect to distance 

3.2 Categorization of Terrain Types Using Pathloss Model Simulations 

To characterize the local terrain environment, a terrain classification was performed based on the 

prediction performance of three conventional path loss propagation models: Okumura-Hata, Stanford University 

Interim (SUI), and Ericsson 9999. Each model was calibrated and evaluated against field-measured pathloss data 

to assess its accuracy and suitability for the heterogeneous urban and semi-urban conditions of Central Tarakan. 

The root mean square error (RMSE) between simulated and measured PL values was computed for each cell ID 
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across the study region, providing a granular evaluation of model behavior under varying local conditions. The 

resulting RMSE values are summarized in Table 6. 

Table 6. Performance of traditional PL models in simulation 

Cell-ID 

 RMSE (dB)  

Okumura-Hata SUI Ericsson 9999 

Urban Suburban 
Open 

Area 

Terrain 

A 

Terrain 

B 

Terrain 

C 
Urban Suburban Rural 

324005-25 65.57 53.03 93.88 63.47 51.46 73.28 64.73 144.97 208.70 

324176-11 71.01 58.99 81.28 69.06 56.50 78.86 71.25 155.50 221.42 

579008-21 68.35 56.35 84.10 63.84 52.16 74.97 69.60 145.77 205.12 

579008-23 75.28 62.79 80.05 76.25 62.77 84.60 73.67 166.33 239.12 

579043-21 80.05 68.26 74.83 80.90 67.75 89.00 79.32 170.17 241.54 

579043-23 84.67 72.19 70.75 86.52 72.75 94.39 82.73 178.01 252.96 

579043-31 72.94 60.92 79.30 69.15 57.18 79.94 73.89 152.57 213.94 

579176-33 84.17 71.68 71.16 85.82 72.11 93.81 82.30 177.04 251.53 

699052-15 72.96 60.31 85.92 76.12 62.15 83.28 70.02 168.16 245.52 

 

The Okumura-Hata model demonstrated the best overall performance in suburban environments, 

achieving an average RMSE of 63.03 dB, with 77.78% of Cell-IDs classified as optimally predicted under this 

setting; however, two sites exhibited better fit under open-area conditions, suggesting regional heterogeneity in 

propagation characteristics. The SUI model achieved the lowest overall RMSE (61.65 dB) when applied to 

Terrain B, indicating its relative suitability for moderately obstructed, non-urban landscapes. In contrast, the 

Ericsson 9999 model performed most accurately in dense urban areas (RMSE: 74.41 dB), significantly 

outperforming its results in rural and suburban zones (all >100 dB RMSE). Despite these relative strengths, all 

three conventional models exhibited consistently high RMSE values across the study region, underscoring their 

limited adaptability to the complex, mixed-terrain environment of Central Tarakan—characterized by variable 

building densities, topographic undulations, and vegetation cover. These findings corroborate the conclusions of 

[34], which emphasize that traditional empirical models, while useful in standardized environments, are 

insufficiently robust for highly heterogeneous urban settings. Consequently, there is a clear need for adaptive 

optimization techniques—such as PSO—to recalibrate model parameters based on local measurement data and 

thereby improve prediction accuracy under diverse and dynamic propagation conditions. 

3.3 PSO-Based Optimization of Pathloss Propagation Models 

The PSO algorithm was applied to optimize the parameters of the three propagation models—Okumura-

Hata, SUI, and Ericsson 9999. A comprehensive tuning process was performed by varying key PSO parameters, 

such as iteration count, swarm population, inertia weight (ω), cognitive coefficient (c₁), and social coefficient 

(c₂), to achieve the best possible model performance. Table 7 presents the selected parameter configurations used 

for optimizing each PL model. 

The exploration results summarized in Table 7 reveal consistent behavioral trends across all three 

pathloss models following PSO optimization: (1) Rapid convergence was observed within the first 50 iterations, 

with the majority of RMSE reduction occurring during the initial 10–20 iterations—indicating efficient 

exploitation of the search space early in the optimization process; (2) While swarm size had negligible impact 

on the final RMSE (i.e., solution quality), it exerted a pronounced effect on computational efficiency: increasing 

the swarm population from 20 to 150 resulted in a 5-10-fold increase in runtime, without commensurate 

improvement in accuracy; (3) Sensitivity analyses of the key PSO parameters (inertia weight ω, cognitive 

coefficient c₁, and social coefficient c₂) revealed only marginal variations in RMSE performance across tested 

ranges, suggesting that the objective function’s search landscape is characterized by a broad, well-defined global 

optimum basin. These findings imply that near-optimal PL model calibration can be reliably achieved using 

relatively simple, robust parameter settings — specifically, ω = 0.5–0.7, c₁ = 1.8–2.2, and c₂ = 1.8–2.0 — thereby 

obviating the need for extensive, computationally expensive hyperparameter tuning. This practical insight 

enhances the feasibility of deploying PSO in real-world network planning scenarios. A comparative summary of 

the optimized model performances is presented in Table 8, while the original and post-optimization parameter 

values for each conventional propagation model are detailed in Table 9. 

The optimization of conventional pathloss (PL) models using the Particle Swarm Optimization (PSO) 

algorithm yielded substantial improvements in prediction accuracy across all three models, as summarized in 

Table 8. For the Okumura-Hata model, the average RMSE was reduced from 56.64 dB to 5.98 dB — a dramatic 

improvement of 89.44%. Following optimization, this model exhibited the most consistent performance, with 

the lowest standard deviation (1.71 dB) and 88.89% of Cell-IDs achieving RMSE values below the 8 dB 

threshold, indicating high reliability under diverse local conditions. The SUI model also demonstrated significant 

enhancement, with average RMSE decreasing from 61.56 dB to 9.83 dB (84.03% improvement). However, its 
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performance was less uniform: only 44.44% of measurement points met the 8 dB accuracy criterion, and the 

higher standard deviation (4.21 dB) suggests greater sensitivity to spatial variability in terrain and obstruction 

patterns, reflecting comparatively lower adaptability to Central Tarakan’s heterogeneous environment. Most 

strikingly, the Ericsson 9999 model underwent the most transformative improvement, achieving the highest 

percentage error reduction (91.32%), with average RMSE plummeting from 74.17 dB to just 6.44 dB—

outperforming both Okumura-Hata and SUI in absolute accuracy. Notably, after PSO optimization, Ericsson 

9999 attained the lowest minimum RMSE value (0.06 dB) among all models, revealing its strong potential for 

achieving near-perfect predictions under favorable propagation conditions. Despite its poor initial performance, 

this model’s capacity for fine-grained adaptation highlights its untapped predictive capability when calibrated 

with field data. 

Table 7. PSO tuning settings and execution efficiency in PL model optimization 

Parameter Okumura-Hata SUI Ericsson 9999 

Optimal iteration count 50 50 50 

RMSE at the first iteration 7.74 dB 9.37 dB 3.60 dB 

Converged RMSE value 5.73 dB 9.37 dB 2.78 dB 

Optimal swarm size 20 20 20 

Computation time (with swarm size 20) 0.52 s 0.60 s 0.56 s 

Computation time (with swarm size 150) 6.03 s 3.93 s 4.06 s 

Optimized PSO configuration    

• Inertia weight (ω)  0.7 0.5 0.5 

• Cognitive coefficient (c₁)  1.8 2.2 2.0 

• Social coefficient (c2) 1.8 2.0 2.0 

 

Table 8. Performance assessment of PL models based on statistical errors 

Statistic 
Okumura-Hata SUI  Ericsson 9999 

Without PSO With PSO Without PSO With PSO Without PSO With PSO 

Mean (dB) 56.64 5.98 61.56 9.83 74.17 6.44 

Median (dB) 60.92 5.57 62.15 9.38 73.67 7.03 

Min (dB) 7.47 4.08 51.46 4.46 64.73 0.06 

Max (dB) 71.16 9.46 72.75 15.64 82.73 10.81 

Std. Dev 18.37 1.71 7.42 4.21 5.79 3.33 

Skewness -1.99 0.74 0.13 0.27 0.15 -0.54 

Kurtosis 2.80 -0.60 -1.34 -1.46 -1.11 -0.80 

% < 8dB 88.89 44.44 44.44 

% Improvement 89.44 84.03 91.32 

 

Table 9. PL model parameters before and after PSO optimization 

Model A1 A2 A3 B1 B2 E1 E2 E3 E4 

O-H 69.55 26.16 13.82 12.6 44.9 6.55 0.7 1.56 0.8 

O-H PSO 40 28.39 20 30 10 1.04 0.9 3 2 

 

Model A B C 

SUI A 4.6 0.0075 12.6 

SUI B 0.0075 0.0065 17.1 

SUI C 12.6 0.005 20 

SUI PSO 3.966 0.070 23.191 

 

Model a0 a1 a2 a3 

Eric Ur 36.20 30.20 12 0.1 

Eric SU 43.20 68.63 12 0.1 

Eric Ru 45.95 100.6 12 0.1 

Eric PSO 28.755 0.875 11.209 0.030 
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Statistical analysis reveals a pronounced shift in the error distribution of the Okumura-Hata model 

following PSO optimization. Skewness evolved from –1.99 to 0.74, indicating a transition from a left-skewed 

(high-RMSE tail) to a near-symmetric or slightly right-skewed distribution—reflecting a significant reduction in 

the frequency of large prediction errors. Kurtosis shifted from a positive value of 2.80 (leptokurtic, heavy-tailed) 

to –0.60 (platykurtic), signaling a more uniform and dispersed error profile, with fewer extreme outliers. Prior 

to optimization, the model exhibited optimal performance in suburban environments, consistent with its original 

empirical derivation. However, after PSO calibration, urban areas emerged as the region with the highest 

accuracy, suggesting that the algorithm successfully reweighted model parameters to better capture the complex 

propagation characteristics of Central Tarakan’s built-up environment—including dense infrastructure, variable 

building heights, and multipath effects. Although all three models benefited from PSO-based optimization, the 

recalibrated Okumura-Hata model delivered the most consistent and reliable predictions, achieving the highest 

proportion of Cell-IDs (88.89%) with RMSE ≤ 8 dB—a threshold widely regarded as indicative of acceptable 

network planning accuracy. This superior reliability underscores its suitability for practical deployment in 

heterogeneous urban-suburban landscapes. Critically, these results demonstrate that real-world signal behavior 

in Central Tarakan deviates significantly from the idealized logarithmic assumptions inherent in conventional 

propagation models. The marked improvement achieved through data-driven calibration strongly supports the 

necessity of adopting site-specific, optimization-based approaches for accurate path loss estimation in complex, 

non-standard environments. 

This study presents a practical implementation of the Particle Swarm Optimization (PSO) framework 

originally introduced by Kennedy and Eberhart [14], extending its application to the calibration of empirical path 

loss models in complex 4G-LTE environments. While prior work by [13] highlights the inherent limitations of 

conventional propagation models when applied without adaptation, this paper addresses that gap through a data-

driven, algorithmically enhanced optimization approach. Furthermore, insights from [37] on improved 

convergence strategies—such as the use of Fuzzy Enhanced Inertia Weight (FEIW)—suggest promising avenues 

for future refinement. Collectively, this work represents a natural synthesis and evolution of three foundational 

contributions: it builds upon the conceptual foundation of PSO from [14], incorporates algorithmic enhancements 

from [37], and leverages the empirical modeling framework established in [13]. By unifying these elements into 

a cohesive, field-validated methodology, this study advances the state of the art in site-specific path loss 

prediction—demonstrating how intelligent optimization can bridge the gap between theoretical models and real-

world propagation dynamics in heterogeneous urban landscapes such as Central Tarakan. 

4. CONCLUSION 

This study assessed the 4G-LTE network performance in Tarakan using signal quality mapping and PL 

estimation. While RSRP indicated good to excellent signal strength, RSRQ revealed vulnerability to interference. 

PL values varied significantly due to LOS/NLOS conditions influenced by buildings and vegetation. Three 

conventional models — Okumura-Hata, SUI, and Ericsson 9999 — showed poor accuracy, with RMSE values 

far exceeding the 8 dB threshold. Applying Particle Swarm Optimization (PSO) greatly improved prediction 

accuracy. The optimized Okumura-Hata model performed best, achieving an average RMSE of 5.98 dB, with 

88.89% of Cell-IDs meeting the 8 dB criterion. Ericsson 9999 showed the highest improvement (91.32%), while 

SUI remained sensitive to geographical variations. PSO-based optimization effectively recalibrated model 

parameters for local conditions. The PSO-enhanced Okumura-Hata model is recommended for accurate PL 

estimation in complex urban environments like Tarakan, highlighting the value of data-driven optimization in 

propagation modeling. Based on the findings of this study, the next development direction is the application of 

this Particle Swarm Optimization (PSO)-based optimization framework to 5G networks, particularly for 

modeling path loss in urban environments with complex and heterogeneous topography. The data-driven 

approach, proven effective in improving propagation model accuracy in 4G-LTE networks in Tarakan, can be 

further developed to accommodate higher frequencies and beamforming technologies in 5G networks. 

Furthermore, variations in environmental conditions such as building density, structure height, and the use of 

massive MIMO should be integrated into the model to enhance prediction realism. Aligned with the 

recommendations of [34], which emphasize the importance of analyzing model stability and adaptability under 

dynamically changing environmental conditions, future research could extend model validation across various 

urban, suburban, and rural scenarios using empirical datasets from broader geographical regions, aiming to 

establish a more universal yet locally sensitive modeling framework. While the PSO method itself is not part the 

study of [13], the scientific direction proposed in the statement is highly consistent with the article’s contributions 

and recommendations. The measured D-band channel data, reflection characteristics, and angular analysis 

provide the empirical basis needed to build advanced, adaptive, and environment-aware propagation models for 

future 5G/6G FWA systems—exactly what the statement envisions. 
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