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 In the post-pandemic era, Indonesia’s commercial airlines are under 

increasing pressure to expand their fleets in response to a sharp rebound in 

passenger demand. While traditional aircraft acquisition decisions have 

relied heavily on expert judgment, recent advancements in artificial 

intelligence (AI) and decision support systems have introduced new 

possibilities for enhancing strategic evaluations. This study contributes to 

the growing body of research on AI-assisted decision-making by comparing 

human expert assessments with AI-generated recommendations in selecting 

new aircraft. Using a hybrid multi-criteria decision-making (MCDM) 

framework that integrates the Analytic Hierarchy Process (AHP) and the 

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), 

we assess eight aircraft models across six key criteria: aircraft price, seating 

capacity, maximum take-off weight (MTOW), cargo capacity, range, and 

cost per available seat mile (CASM). Our findings reveal subtle differences 

in how humans and AI assign weights to each criterion. However, a Mann-

Whitney U test (p = 0.689) confirms that these differences are not 

statistically significant. Notably, both approaches converge on the same 

optimal choice—the A321neo—highlighting the potential of AI to augment, 

rather than replace, human decision-making in complex procurement 

scenarios. 
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1. INTRODUCTION  

Aviation is one of many industries affected by the COVID-19 pandemic. This has been caused by 

regulations restricting air travel and public concerns about the possibility of contracting the COVID-19 virus while 

traveling by air. This has resulted in a decrease in the number of passengers, which has impacted the number of 

operating aircraft and the financial performance of airlines. Airlines must adjust their operations to maintain their 

financial performance and avoid deterioration [1]. 

The demand for air travel has increased significantly as the COVID-19 pandemic ends, with many 

regulations regarding air travel restrictions lifted. Due to the substantial reduction in aircraft operations in 

Indonesia compared to before the pandemic, airplane ticket prices have skyrocketed. To stabilize ticket prices and 

meet the demand for air travel, airlines, including low-cost carriers, need to expand their fleet size by acquiring 

additional aircraft [2], [3]. 

Determining the appropriate aircraft type for airline procurement is a complex process that must be 

divided into several steps. The first step is defining the criteria for selecting the correct aircraft type. Previous 

research by Ardil (2020) on the aircraft selection process identified criteria such as aircraft price, fuel efficiency 

per seat, range, number of seats, luggage volume, and Maximum Take-off Weight (MTOW) for selecting the right 

aircraft type [4]. Other research by Dožić et al. (2018) considers criteria including seat capacity, MTOW, range, 

purchasing cost, maintenance cost, cost per available seat mile (CASM), delivery time, payment conditions, fleet 

commonality, and comfort to determine the correct type of aircraft [5]. Additionally, research conducted by Kiraci 

& Bakir (2018) on the aircraft selection process applies criteria such as range, price, speed, seating capacity, fuel 

consumption, maximum payload, and the amount of greenhouse gas released to determine the correct aircraft type 

[6]. From these various studies, different conclusions emerge regarding the appropriate aircraft type for an airline 

due to differences in objectives, methodologies, criteria used, and available aircraft options. 
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The weight of each criterion will significantly influence the decision when determining the correct aircraft 

type. Therefore, assigning weight to each criterion is critical in selecting the appropriate aircraft type. One common 

method for determining the weight of each criterion is the analytical hierarchy process, in which the chosen expert 

completes the pairwise comparison questionnaire for each criterion [7], [8]. 

However, this method also has a limitation: the judgment made by a human expert is subjective, which 

may lead to bias if the expert has other interests [9]. With the current technology, humans can involve artificial 

intelligence in decision-making, such as multi-criteria decision-making. Artificial intelligence can be utilized to 

determine the weight of criteria and processes conducted in previous research by Svoboda & Lande (2024) [10]. 

Few studies have utilized this approach in the available literature on the use of artificial intelligence in decision-

making. Research conducted by Dehghanimohammadabadi & Kabadayı (2024) uses artificial intelligence with the 

AHP framework to make a decision for supplier selection that uses three criteria and fifteen sub-criteria [11]. Other 

research conducted by H. Wang et al. (2025) uses artificial intelligence in a hybrid MCDM framework to assess 

the problem regarding supplier evaluation [12]. Furthermore, no prior research compares the results of human 

experts and artificial intelligence in decision-making processes, particularly in multi-criteria decision-making. 

Therefore, this research aims to fill this gap by comparing the results of human experts and artificial intelligence 

in selecting the appropriate type of aircraft. 

2. METHODS 

2.1 Definition of Methods  

This research examines how human experts and artificial intelligence differ in selecting an aircraft by 

utilizing the AHP and TOPSIS methods, along with statistical tests to identify any statistically significant 

differences. The AHP method determines the weight of each criterion assessed by both human experts and artificial 

intelligence. The TOPSIS method identifies the most suitable type of aircraft based on those weights. Finally, the 

study compares the rankings produced by human experts and artificial intelligence after applying TOPSIS. 

2.2 Data Collection 

The first step is determining the criteria for selecting the appropriate aircraft type, specifically low-cost 

carrier aircraft operating in Indonesia. To achieve this, a literature review of the aircraft selection process from 

2014 to 2024 is conducted, as shown in Table 1, and an interview is conducted with a human expert. The 

hierarchical structure of this research is illustrated in Figure 1, featuring six criteria and eight alternative types of 

aircraft. The next step involves five human experts filling out a pairwise comparison questionnaire for each 

criterion, with the qualifications for each human expert shown in Table 2. The same questionnaire is also 

administered to artificial intelligence (ChatGPT model o1) by transforming it into a prompt. Eight prompt 

combinations and two types of memory (with and without memory) are used to generate pairwise comparisons for 

each criterion: 

1. zero shot + chain of thought 

2. zero shot + tree of thought 

3. one shot + chain of thought 

4. one shot + tree of thought 

5. zero shot + chain of thought + role-based 

6. zero shot + tree of thought + role-based 

7. one shot + chain of thought + role-based 

8. one shot + tree of thought + role-based 

This combination of prompting techniques follows H. Wang et al. (2025) research, which utilizes a mix 

of prompting methods, including zero-shot, one-shot, and chain of thought. 

Besides the results of the questionnaire, the technical and economic data of the criteria for each type of 

aircraft are also gathered to rank of aircraft types using TOPSIS methods, which is shown in Table 3 [23], [24], 

[25]. 
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Table 1. Literature review for aircraft selection process research paper 2014-2024 

Authors Criteria Alternative Methods Used 

Dožić & 

Kalić (2014) 

[13] 

Seat capacity, Price, Baggage 

capacity, MTOW, Payment 

conditions, CASM 

ERJ 190, CRJ 700, CRJ 900, 

CRJ 1000, ATR 72–500, 

ATR 72–600, Q 400 NG 
  

AHP 

Dožić & 

Kalić (2015) 

[14] 

Seat capacity, Price, MTOW, 

Baggage per passenger, CASM 

ATR 72-500, ATR 72-600, E 

190, Q400, CRJ 700, CRJ 

900, CRJ 1000, A319, A320, 

A321, A319neo, A320neo, 

A321neo, B737-700, B737-

800, B737-900ER 
  

ESM, Regression, 

Fuzzy logic 

Bruno et al. 

(2015) [15] 

CASM, Aircraft price, Speed, 

Autonomy, Seat comfort, Cabin 

luggage compartment size, 

Environmental pollution, Noise 

Bombardier CRJ1000, Sukhoi 

SSJ100, Embraer ERJ190 

 

 
 

AHP, Fuzzy Set 

Theory 

Dožić et al. 

(2018) [16] 

Seat capacity, MTOW, Range, 

Purchasing costs, Maintenance costs, 

CASM, Delivery time, Payment 

conditions, Fleet commonality, 

Comfort 

ATR72-500, ATR72-600, 

ERJ 

190, Q400 NG, CRJ 700, CRJ 

900, CRJ 1000 

 
 

Fuzzy AHP 

Kiraci & 

Bakir (2018) 

[6] 

Range, Price, Speed, Seating 

capacity, Fuel consumption, 

Maximum payload 

A320, A321, B737–800, 

B737-900 ER 

 
 

AHP, CORPRAS, 

MOORA 

Dožić & 

Kalić (2018) 

[5] 

Seat Capacity, Price, Baggage 

capacity, MTOW, Payment 

conditions, CASM 

ERJ 190, CRJ 700, CRJ 900, 

CRJ 1000, ATR 72–500, 

ATR 72–600, Q 400 NG 
 

AHP, FAHP, Even 

Swaps method 

Ilgin (2019) 

[17] 

Price, Fuel consumption, Range, 

Number of seats, Luggage volume 

A319 neo, A320 neo, A321 

neo, B737 max 7, B737 max 

8, B737 max 9 
 

Linear Physical 

Programming-LPP, 

TOPSIS 

Ardil 

(2019)[18] 

Price of aircraft, Fuel efficiency per 

seat, Aircraft range, Aircraft seat 

capacity, MTOW, Maximum payload 

A320neo, A321neo, B737 

max 8, B737 max 9 

 

 

 
 

Multiple Criteria 

Utility Theory, 

Maximal Regret 

Minimization 

Theory 

Kiracı & 

Akan (2020) 

[19] 

Range, Fuel consumption per seat 

mile, Speed, Useful life of the 

aircraft, Landing and take-Off 

distance, MTOW, Aircraft seat 

capacity, Maintenance cost, Salvage 

cost, Operating cost, Price of aircraft, 

Pollution, Noise 

A320neo, A321neo, B737 

max 8, B737 max 9 

 

 

 

 

 
 

IT2FAHP, 

IT2FTOPSIS 

Ardil (2020) 

[4] 

Aircraft price, Aircraft fuel 

consumption, Aircraft fuel efficiency 

per seat, Aircraft range, Aircraft 

number of seats, Aircraft luggage 

volume, MTOW 

A319neo, A320neo, 

A321neo, B737 max 7, B737 

max 8, B 737 max 9 

 

 
 

PARIS, TOPSIS 

Ardil (2022) 

[20] 

Price, Fuel consumption, Range, 

Number of seats, Luggage Volume, 

MTOW 

A319neo, A320neo, 

A321neo, B737 max 7, B737 

max 8, B 737 max 9 

 

 
 

Entropic Weight 

Method, Preference 

Optimization 

Programming, 

TOPSIS 

Ardil (2023) 

[21] 

Flight range, Number of seats, 

MTOW, Luggage volume, Fuel 

consumption, Purchase cost 

A319neo, A320neo, 

A321neo, B737 max 7, B737 

max 8, B 737 max 9 
 

Reference Linear 

Combination (RLC) 

Bağcı & 

Kartal 

(2024) [22] 

Purchase cost, Fuel capacity, 

Maximum seat capacity, Range, 

MTOW, Cargo capacity 

A319neo, A320neo, 

A321neo, B737 max 7, B737 

max 8, B737 max 9 

SWARA, COPRAS 
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Figure 1. Aircraft selection process hierarchy structure 
 

Table 2. Detail Qualification of Human Expert 

Human expert Role Education Work Experience 

Human expert 1 Vice president of engineering 

services in MRO 

Bachelor’s degree in 

mechanical engineering 

31 Years in aircraft 

engineering  

Human expert 2 Vice president of business 

support in airline 

Master’s degree in 

industrial engineering 

14 years (9 years in 

airline procurement and 

supply chain) 

Human expert 3 Aviation consultant (previously 

CEO of engineering in airline) 

Master’s degree on 

Airline management 

30 years (15 years in 

airline operation) 

Human expert 4 Manager of Airworthiness in 

MRO 

Doctoral degree in 

aerospace engineering 

15 years (10 years in 

aircraft engineering) 

Human expert 5 Aviation consultant (previously 

CEO of aircraft manufacturer) 

Master’s degree in 

management 

42 years (25 years in 

aircraft manufacturer) 
 

Table 3. Multi-response value for each criterion for all alternative aircraft types 

Alternative Criterion 

Aircraft 
Purchase cost 

(million $) 

Maximum 

seat (pax) 

MTOW 

(kg) 
Range (km) 

Cargo 

Capacity (m3) 
CASM($) 

A319neo 101.5 160 75500 6850 27.0 0.08085 

A320neo 110.6 194 79000 6300 37.0 0.07188 

A321neo 129.5 244 97000 7400 51.0 0.06674 

B737-max 7 96.0 172 80000 7040 32.3 0.08500 

B737-max 8 117.1 210 82600 6480 44.0 0.07111 

B737-max 9 124.1 220 88300 6110 51.3 0.68780 

E190-E2 64.6 114 56400 5278 21.3 0.08308 

E195-E2 72.8 146 62000 4815 25.4 0.06962 
 

2.3 Data Analysis 

After collecting the results from the pairwise comparison of each criterion using artificial intelligence, 

five prompt combinations are randomly selected using simple random sampling without replacement method to 

represent five artificial intelligence “experts”. This approach is used to equal the number of human expert 

participants in this research, that are five human experts, and this procedure follows Dehghanimohammadabadi & 

Kabadayı (2024), who use artificial intelligence as expert judgments, with each result standing for one expert, after 

which the AHP method is employed to calculate the weight of each criterion [11]. Subsequently, the results from 

both the artificial intelligence and human experts are calculated separately to determine the weight of each 

criterion. As a result, there are two weighting values: the weight of each criterion assessed by artificial intelligence 

and the weight of each criterion evaluated by a human expert. 

Using the weights from the previous process, the rankings for each aircraft type are calculated using the 

TOPSIS method. Consequently, there are two types of aircraft rankings: one based on weights determined by 

artificial intelligence and the other based on weights evaluated by a human expert. We then compare artificial 
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intelligence- and human-expert rankings to see whether they differ in overall ordering and logical reasoning when 

evaluating each criterion. Finally, we do the Mann-Whitney U test to see whether any weight differences are 

statistically significant. This approach aligns with Dash (2016) research that uses weight values from AHP 

calculations as input to determine whether a statistically significant differences indicated by the Mann-Whitney U 

test [26].   

3. RESULTS AND DISCUSSION 

3.1 Aircraft Criteria Weight 

 Five of the eight types of prompt combinations have been randomly selected to represent the artificial 

intelligence expert. These combinations are presented in Table 4, each corresponding to a distinct expert judgment. 

Subsequently, the AHP method is utilized for pairwise comparisons using artificial intelligence to determine the 

weight of each criterion, as illustrated in Table 5. The same AHP method will be applied to evaluate the pairwise 

comparison results by a human expert, as shown in Table 6. 

Table 4. Prompt combination that represents an artificial intelligence expert 

Artificial Intelligence Expert Prompting Technique Combination 

Generate Result 1 One shot + chain of thought + role-based 

Generate Result 2 Zero shot + chain of thought 

Generate Result 3 One shot + chain of thought 

Generate Result 4 One Shot + tree of thought + role-based 

Generate Result 5 Zero shot + tree of thought 

Table 5. The weight of criterion judged by artificial intelligence 

Criteria 
Purchase 

cost 

Maximum 

seat 
MTOW Range 

Cargo 

Capacity 
CASM 

Priority 

Vector 

Purchase cost 1.000 0.392 3.000 5.000 4.169 0.384 0.182 

Maximum seat 2.551 1.000 3.064 5.348 6.346 0.530 0.279 

MTOW 0.333 0.326 1.000 1.933 1.380 0.200 0.076 

Range 0.200 0.187 0.517 1.000 0.425 0.175 0.043 

Cargo Capacity 0.240 0.158 0.725 2.352 1.000 0.229 0.064 

CASM 2.605 1.889 5.000 5.720 4.359 1.000 0.357 

Table 6. The weight of the criterion judged by human expert 

Criteria 
Purchase 

cost 

Maximum 

seat 
MTOW Range 

Cargo 

Capacity 
CASM 

Priority 

Vector 

Purchase cost 1.000 1.122 2.631 2.862 1.783 1.000 0.195 

Maximum seat 0.891 1.000 2.491 2.491 1.939 0.891 0.168 

MTOW 0.380 0.401 1.000 1.516 1.052 0.380 0.085 

Range 0.349 0.401 0.660 1.000 0.824 0.349 0.069 

Cargo Capacity 0.561 0.516 0.951 1.213 1.000 0.561 0.101 

CASM 1.864 3.728 4.856 5.008 2.551 1.864 0.382 
 

The findings reveal that the assessment weights assigned by artificial intelligence are 35.7% for CASM, 

27.9% for maximum seat capacity, 18.2% for purchase cost, 7.6% for MTOW, 6.4% for cargo capacity, and 4.3% 

for range, resulting in a consistency ratio of 0.037. In comparison, the weights determined by human experts are 

38.2% for CASM, 19.5% for purchase cost, 16.8% for maximum seat capacity, 10.1% for cargo capacity, 8.5% 

for MTOW, and 6.9% for range, yielding a consistency ratio of 0.017. Across both evaluations, CASM remains 

the most significant criterion. This aligns with the assertion by Chiambaretto & Combe (2023) that low-cost 

carriers prioritize cost efficiency, which in this study is reflected in the importance of the CASM criterion. 

Furthermore, the research demonstrates that CASM is an indicator of operational performance through economic 

metrics [27].  

3.2 Aircraft Alternative Ranking 

Following the assessment of the importance of each criterion identified by both AI and human experts, 

the TOPSIS method is used to rank various aircraft types based on the multi-response values presented in Table 3. 

The weighted multi-response values for all aircraft types are detailed in Table 7 for AI evaluations and in Table 8 

for assessments conducted by human experts.      

Following the calculations, the A321neo emerges as the most suitable aircraft, with the B737 Max 9, 

B737 Max 8, A320neo, E195-E2, B737 Max 7, A319neo, and E190-E2 ranked in that order, as assessed by 

artificial intelligence. In evaluations from human experts, the A321neo also ranks first, followed by the B737 Max 

9, B737 Max 8, E195-E2, A320neo, E190-E2, B737 Max 7, and A319neo, as displayed in Table 10. Regardless 

of the evaluation method—artificial intelligence or human expertise—the A321neo consistently stands out as the 

http://avitec.itda.ac.id/
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optimal choice. This conclusion is supported by research conducted by Ilgin (2019), Kiracı & Akan (2020), and 

Ardıl (2020), confirming that the A321neo is superior to other options. Additionally, in a study by Guntut & 

Gokdalay (2023), the A321neo is recognized as the best aircraft for low-cost carriers, owing to its technical, 

economic, and environmental benefits. economic, and environmental benefits.[28]. 

Table 7. Multiple response values after being weighted by the AHP calculation are judged  

by artificial intelligence. 

Alternatives 
Purchase cost Maximum seat MTOW Range Cargo Capacity CASM 

min max max max max min 

A319neo 0.0626 0.0843 0.0257 0.0159 0.0163 0.1361 

A320neo 0.0682 0.1023 0.0269 0.0147 0.0223 0.1210 

A321neo 0.0798 0.1286 0.0330 0.0172 0.0308 0.1124 

B737 max 7 0.0592 0.0907 0.0272 0.0164 0.0195 0.1431 

B737 max 8 0.0722 0.1107 0.0281 0.0151 0.0266 0.1197 

B737 max 9 0.0765 0.1160 0.0301 0.0142 0.0310 0.1158 

E190-E2 0.0398 0.0601 0.0192 0.0112 0.0129 0.1399 

E195-E2 0.0449 0.0770 0.0211 0.0149 0.0153 0.1172 

 

Table 8. Multiple response values after being weighted by the AHP calculation are judged by a human expert 
 

Alternatives 
Purchase cost Maximum seat MTOW Range Cargo Capacity CASM 

min max max max max min 

A319neo 0.0669 0.0508 0.0290 0.0259 0.0255 0.1458 

A320neo 0.0729 0.0616 0.0304 0.0239 0.0349 0.1297 

A321neo 0.0854 0.0774 0.0373 0.0280 0.0481 0.1204 

B737 max 7 0.0633 0.0546 0.0307 0.0267 0.0305 0.1533 

B737 max 8 0.0772 0.0666 0.0317 0.0245 0.0415 0.1283 

B737 max 9 0.0818 0.0698 0.0339 0.0231 0.0484 0.1241 

E190-E2 0.0426 0.0362 0.0217 0.0182 0.0201 0.1499 

E195-E2 0.0480 0.0463 0.0238 0.0242 0.0240 0.1256 

 

3.3 Comparison between Artificial Intelligence and Human Expert in Aircraft Selection Process 

Table 9 displays the discrepancies in evaluations between artificial intelligence and human experts for 

each selection criterion. The comparison of AI and human expert assessments during aircraft selection shows both 

convergence and divergence on key decision-making criteria. Both groups recognized Cost per Available Seat 

Mile (CASM) as the most crucial element, an anticipated result due to its significant effect on operational 

efficiency and profitability, particularly for budget-conscious airlines in the post-pandemic era. This agreement 

underscores CASM's importance as a commonly prioritized metric in fleet acquisition strategies. 

Nonetheless, differences emerge in the second-tier preferences. The AI model placed greater emphasis 

on maximizing seating capacity, as it could enhance break-even performance during high-demand situations. 

Conversely, human experts focused on purchase cost, indicating a risk-averse strategy tied to managing capital 

expenditure and market unpredictability. This disparity implies that the AI leans towards long-term operational 

efficiency, while human experts are more wary of risks associated with initial investments and variable load 

factors. 

Further differences emerged in how cargo capacity was valued. Human experts assigned it greater 

importance, acknowledging the increasing role of auxiliary revenue streams in airline business models. In contrast, 

the AI system minimized this factor, possibly due to a more limited optimization focus on passenger metrics. This 

underscores a limitation of AI when domain-specific strategic nuances are not adequately represented in the model. 

Interestingly, both AI and human experts assigned moderate to low importance to criteria like MTOW 

and range. This could result from the study’s emphasis on narrow-body aircraft typically utilized for domestic or 

regional flights in Indonesia, where extended range or payload capacities are not as crucial. 

Table 9. Comparison of weight for each criterion judged by artificial intelligence and human experts. 
 

Criteria 
Artificial Intelligence Human Expert 

Priority Vector Ranking Priority Vector Ranking 

Purchase cost 18.19% 3 19.46% 2 

Maximum seat 27.85% 2 16.77% 3 

MTOW 7.56% 4 8.54% 5 

Range 4.26% 6 6.92% 6 

Cargo Capacity 6.45% 5 10.08% 4 

CASM 35.69% 1 38.23% 1 
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Table 10. Comparison of aircraft type ranking for this context of research  

that judges by artificial intelligence and a human expert. 

Alternatives 
Artificial Intelligence Human Expert 

Preferences Ranking Preferences Ranking 

A319neo 0.356 7 0.352 8 

A320neo 0.552 4 0.514 5 

A321neo 0.663 1 0.594 1 

B737 max 7 0.417 6 0.402 7 

B737 max 8 0.605 3 0.552 3 

B737 max 9 0.627 2 0.573 2 

E190-E2 0.341 8 0.413 6 

E195-E2 0.457 5 0.531 4 

 

The Mann-Whitney U test revealed no statistically significant difference (p = 0.689) between the two 

priority vector sets, as shown in figure 2; however, the practical implications of these differences are noteworthy. 

Statistical similarity does not equate to functional equivalence. The congruence in top rankings suggests that AI 

systems can produce outcomes similar to human decision-making. Yet, the differences in intermediate rankings 

highlight potential for hybrid approaches, combining AI's rapid, data-driven evaluations with human judgment to 

enhance decisions within operational contexts. 

Additionally, when the research examines the rankings of the most appropriate aircraft according to 

artificial intelligence and human experts, the top three ranks are the same for both evaluations. However, starting 

from rank 4, distinctions arise between the assessments made by artificial intelligence and those determined by 

human experts, as illustrated in Table 10. In this case, we chose only one specific aircraft type, adhering to the 

low-cost airline's operational guidelines stipulating the use of a single aircraft type for greater efficiency. The 

alignment between artificial intelligence and human experts' conclusions concerning the optimal aircraft for this 

situation demonstrates that artificial intelligence can significantly support human experts in selecting the right 

aircraft type.  
 

 

Figure 2. Result for test of comparison of weight for each criterion that is judged by artificial intelligence and 

human expert using Mann-Whitney U test. 

4. CONCLUSION 

This study demonstrates that an artificial intelligence-enhanced decision-making framework, which 

integrates AHP and TOPSIS across six criteria—purchase cost, maximum seat capacity, MTOW, range, cargo 

capacity, and CASM—yields result comparable to those from human experts for eight aircraft models in 

Indonesia’s post-pandemic commercial aviation sector. Although AI and human assessments produce slightly 

different priority scores, particularly for maximum seat capacity, purchase cost, and cargo capacity, these 

differences are not statistically significant (Mann-Whitney U test, p = 0.689). Both methods identify the Airbus 

A321neo as the top choice. This research adds to the ongoing discourse on AI-human collaboration in decision-

making by showing how AI systems, paired with strong MCDM techniques, can reflect human judgments and 

offer scalable insights for the aviation industry. Future investigations could build on this work by integrating 

dynamic factors such as market fluctuations, anticipated maintenance costs, or environmental performance, further 

enhancing AI's role in sustainable and adaptable fleet management. 
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