Pengembangan Model Klasterisasi Pengelompokan UMKM Bersertifikasi Halal di Kota Surakarta

Erna Indriastiningsih

Submitted : 2025-09-21, Published : 2025-11-20.

Abstract

The halal industry significantly contributes to the global economy, with Surakarta recording a 15.3% increase in halal-based MSMEs between 2019–2022, totaling around 8,500 potentials. Yet, by 2023, only 17 MSMEs obtained official halal certification, revealing a substantial gap. This study applies K-Means Clustering to map halal-certified MSMEs in Surakarta as a strategic effort to strengthen the ecosystem. Using data from 17 MSMEs, three optimal clusters (High, Medium, Low) were identified, validated with a Silhouette Score of 0.63. Each cluster reflects distinct characteristics across financial, operational, marketing, and halal compliance aspects. The findings offer an empirical foundation for stakeholders to formulate targeted interventions, including certification training, digital marketing adoption, and market expansion support. This clustering approach is expected to drive inclusive, effective, and competitive growth of the halal economy in Surakarta.

Keywords

Clustering, K-Means, Halal MSMEs, Halal Certification, Surakarta.

References

Nuryanti. (2023). Integrasi Nilai-nilai Pendidikan Islam dalam Industri Halal : Perspektif. At-Tadbir: Jurnal Manajemen Pendidikan Islam, 2(2), 75–87.

Utami, M., Aqila, C., Andini, P., & Julianti Nasution, Y. S. (2024). Analisis Pertumbuhan Konsumsi Produk Halal di Berbagai Sektor Ekonomi Indonesia Hingga Tahun 2025. J-EBI: Jurnal Ekonomi Bisnis Islam, 3(02), 105–122. https://doi.org/10.57210/j-ebi.v3i02.318

Muhammad Cholil, Mamduh, M. F., Pertiwi, T. D., Cipto, D. A., & Herianingrum, S. (2025). Exploring the Economic Benefits of the Halal Certification in International Trade: A Literature Review. Sriwijaya International Journal of Dynamic Economics and Business, 8(March), 435–458. https://doi.org/10.29259/sijdeb.v8i4.435-458

Azzam, A., Irma Purnamasari, A., & Ali, I. (2024). Implementasi Algoritma K-Means Clustering Untuk Analisis Persebaran Umkm Di Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3062–3070. https://doi.org/10.36040/jati.v8i3.8450

Kurniadi, A. (2025). Determinan Pertumbuhan Industri Halal di Indonesia: Analisis Sektor Demografi, Infrastruktur, dan Teknologi. Jurnal Al-Istishna, 1(2), 89–106. https://doi.org/10.58326/jai.v1i2.279

Donna, D. R., Dono, N. D., & Ahnaf, M. I. (2025). Evaluasi Dampak Sertifikasi Halal pada UMKM Produsen Makanan dan Minuman Anggota Desa Preneur Model K45PAK. Indonesia Journal of Halal, 8(1), 25–38. https://ejournal2.undip.ac.id/index.php/ijh/article/view/25367

Nurzaman, M. S. (2025). Does Halal Industry Impact Economic Growth ? An Empirical Evidence from Muslim Countries in Asia Does Halal Industry Impact Economic Growth ? An Empirical Evidence from Musl. International Journal of Islamic Economics and Business Sustainability ( IJIEBS ), 1(1).

Iin, I., Fadila, R., Rizki Rinaldi, A., & Fathurrohman, F. (2024). Penerapan Data Mining Dalam Mengelompokan Jumlah Umkm Berdasarkan Kabupaten Kota Menggunakan K-Means Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1446–1450. https://doi.org/10.36040/jati.v8i2.8427

Purwanto, & Suprihati. (2024). Analisis Sistem Pengawasan MUI Terhadap Sertifikat Halal pada UMKM di Kota Surakarta. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 5(11), 5172–5184. https://doi.org/10.47467/elmal.v5i11.5132

Herianti, H., Siradjuddin, S., & Efendi, A. (2023). Industri Halal Dari Perspektif Potensi Dan Perkembangannya Di Indonesia. Indonesia Journal of Halal, 6(2), 56–64. https://doi.org/10.14710/halal.v6i2.19249

Intan Sari, Yani Maulita, & Lina Arliana Nur Kadim. (2024). Pengelompokan UMKM Kota Binjai Menggunakan Metode Clustering K-Means Untuk Mengidentifikasi Pola Perkembangan Bisnis. Bridge : Jurnal Publikasi Sistem Informasi Dan Telekomunikasi, 2(3), 198–206. https://doi.org/10.62951/bridge.v2i3.148

Afrizal, M., Saputra, I., & Satria, R. (2023). VISA: Journal of Visions and Ideas Analisis Performa Algoritma K-Means Clustering untuk Segmentasi Pasar di UMKM. 5(2), 647–657.

Siregar, B., & Yosia, Y. (2024). Implementation of K-means Clustering Algorithm for the Indonesian Stock Exchange. Jurnal Sisfotek Global, 14(1), 49. https://doi.org/10.38101/sisfotek.v14i1.10860

Yulisasih, B. N., Herman, H., Sunardi, S., & Yuliansyah, H. (2024). Evaluation of K-Means Clustering Using Silhouette Score Method on Customer Segmentation. ILKOM Jurnal Ilmiah, 16(3), 330–342. https://doi.org/10.33096/ilkom.v16i3.2325.330-342

Putra, R. H., & Fakhriza, M. (2024). Penerapan Algoritma K-Means Pada Klasterisasi Data Penerima Pkh Di Kecamatan Medan Timur. JISTech (Journal of Islamic Science and Technology) JISTech, 9(1), 1–8. http://jurnal.uinsu.ac.id/index.php/jistech

Maesaroh, S. Wf., Diansyah, T. M., Liza, R., Fitri, Y., & Lubis, A. (2025). BULLETIN OF COMPUTER SCIENCE RESEARCH Pemanfaatan Algoritma K-Means Clustering Pada Sistem Rental Mobil. Media Online), 5(3), 173–181. https://doi.org/10.47065/bulletincsr.v5i3.494

Rochmawati, M., Wisnu, G., Bagaskara, C., Adha, I. A., Umaidah, Y., Voutama, A., Studi, P., Informasi, S., Komputer, F. I., & Singaperbangsa, U. (2024). Implementasi Algoritma K-Means dalam Klasterisasi Penjualan pada Sebuah Perusahaan menggunakan Metodologi KDD Implementation of the K-Means Algorithm in Sales Clustering at a Company using the KDD Methodology. 13, 54–62

Cytry, D. M., Defit, S., & Nurcahyo, G. (2023). Penerapan Metode K-Means dalam Klasterisasi Status Desa terhadap Keluarga Beresiko Stunting. Jurnal KomtekInfo, 122-127.

IAEI, R. (2024). EKSIS-State-of-The-Global-Islamic-Economy-(SGIE). https://iaei.or.id/id/berita-dan-artikel/artikel/posisi-indonesia-dalam-sgie

Iqbal, M., Syaripuddin, & Nurul, N. M. (2023). Implementasi Algoritma K-Means Clustering dengan Jarak Euclidean dalam Mengelompokkan Daerah Penyebaran COVID-19 di Kabupaten Bogor. Jurnal Ilmiah Matematika, 2(1), 47–56. http://jurnal.fmipa.unmul.ac.id/index.php/basis

Article Metrics

Abstract view: 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.