Analisis Komponen Rear Back-Up Fitting Terhadap Damage Tolerance dan Durability Pada Vertical Tail Pesawat

Fajar Nugroho, Dwi Hartini, Nurfi Ahmadi, Resa Fadhol Ilahi

Submitted : 2025-09-16, Published : 2026-02-20.

Abstract

Aircraft structures are subjected to repetitive cyclic loading that may induce fatigue damage and crack propagation, potentially compromising structural integrity and flight safety. This study examines the damage tolerance and durability of the rear back-up fitting, a critical structural component of the aircraft vertical tail. The analysis combines the Finite Element Method (FEM) to identify stress concentration regions with crack propagation simulations using D-CRACK software under representative operational loading spectra. The results indicate that the most critical locations occur at the fastener holes of PSE V03-A and PSE V03-B. PSE V03-A reaches a critical crack length of 287.646 mm after 328,801 flight cycles, while PSE V03-B reaches a critical crack length of 283.427 mm after 756,190 flight cycles. The longer fatigue life observed in PSE V03-B is primarily attributed to the presence of a stiffener, which effectively reduces stress concentration and slows crack growth rates. In accordance with FAR 25.571, the first inspection is recommended at 12,294 flight cycles for PSE V03-A and 15,000 flight cycles for PSE V03-B, followed by periodic inspections every 2,000 cycles. These results provide a quantitative basis for determining inspection intervals and support the development of a damage-tolerance-based maintenance manual to enhance structural reliability, operational safety, and long-term aircraft durability

Keywords

Crack Propagation, Damage Tolerance, Durability, Finite Element Method, Rear Back-Up Fitting

References

J. Arrieta and A. G. Striz, “Optimal design of aircraft structures with damage tolerance requirements,” Struct. Multidiscip. Optim., vol. 30, no. 2, pp. 155–163, 2005, doi: 10.1007/s00158-004-0510-0.

R. Jones A.C, “Fatigue crack growth and damage tolerance,” Fatigue Fract. Eng. Mater. Struct., vol. 37, Feb. 2014, doi: 10.1111/ffe.12155.

G. Molinari, I. Meneghin, M. Melega, and E. Troiani, “Parametric damage tolerance design of metallic aeronautical stiffened panels,” Aeronaut. J., vol. 116, pp. 815–831, Aug. 2012, doi: 10.1017/S0001924000007296.

R. Talreja and N. Phan, “Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage,” Compos. Struct., vol. 219, pp. 1–7, 2019, doi: https://doi.org/10.1016/j.compstruct.2019.03.052.

S. Pfingstl, D. Steinweg, M. Zimmermann, and M. Hornung, “On the Potential of Extending Aircraft Service Time Using a Fatigue Damage Index,” pp. 1–19, 2021, [Online]. Available: http://arxiv.org/abs/2008.03138

F. Carta and A. Pirondi, “Damage tolerance analysis of aircraft reinforced panels,” 9th Youth Symp. Exp. Solid Mech. YSESM 2010, vol. 16, pp. 19–24, 2010, doi: 10.3221/igf-esis.16.04.

R. Qomariyah, “Fatigue And Damage Tolerance” Dapat Memperbaiki Sistem Pemeliharaan Struktur Pesawat Udaratle,” J. TNI Angkatan Udar., vol. 1, no. 1, 2022.

T. . Anderson, T.L., & Anderson, Fracture Mechanics : Fundamental and Applications, Third Edit. CRC Press, 2005. doi: 10.1201/9781420058215.

S. M. O. Tavares and P. M. S. T. De Castro, Damage tolerance of metallic aircraft structures: materials and numerical modelling. Springer, 2019.

H. A. Wood and R. M. Engle Jr, “USAF Damage Tolerant Design Handbook: Guidelines for the analysis and Design of Damage Tolerant Aircraft Structures. Revision A,” 1979.

C. Boller, G. Dobmann, and E. Schneider, “In-situ structural integrity monitoring based on non-destructive testing principles”.

J. N. Reddy, An introduction to the finite element method, vol. 3. McGraw-Hill New York, 2005.

M. Liu, Y. Gan, D. A. H. Hanaor, B. Liu, and C. Chen, “An improved semi-analytical solution for stress at round-tip notches,” Eng. Fract. Mech., vol. 149, pp. 134–143, 2015.

A. Beatrin Selan, “Analisis Damage Tolerance Dan Crack Growth Pada Alumunium 2024-T3 Dan Alumunium 7075-T7351 Menggunakan Perangkat Lunak Matlab,” 2018, Institut Teknologi Dirgantara Adisutjipto.

M. Boscolo, G. Allegri, and X. Zhang, “Design and modelling of selective reinforcements for integral aircraft structures,” AIAA J., vol. 46, no. 9, pp. 2323–2331, 2008.

C. Bathias and A. Pineau, “Fatigue of materials and structures,” 2010.

F. R. Steinbacher, “Discussion:‘Analysis of stresses and strains near the end of a crack traversing a plate’(Irwin, GR, 1957, ASME J. Appl. Mech., 24, pp. 361–364),” 1958.

M. H. Aerodynamics, “Airframe Structural Design: Practical Design Information and Data on Aircraft Structures. MCY Niu. Conmilit Press Ltd.”.

F. Erdogan, “Fracture Mechanics and Contact Problems in Materials Involving Graded Coatings and Interfacial Zones,” 2001.

E. Orowan, “Fracture and strength of solids,” Reports Prog. Phys., vol. 12, no. 1, p. 185, 1949.

Article Metrics

Abstract view: 37 times
Download     : 4   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.