Karakteristik Variasi Lateral Tilt Angle pada Friction Stir Welding Material High Density Polyethylene Terhadap Kekuatan Tarik dan Bending

Salsa Bila Azara, Risky Ramadhani, Febri Budi Budi Darsono, Aldias Bahatmaka, Kriswanto Kriswanto, Hendrix Noviyanto Firmansyah

Submitted : 2025-05-18, Published : 2025-11-20.

Abstract

Friction Stir Welding (FSW) is a solid-state joining method suitable for thermoplastics like HDPE, which has lighter and more flexible properties. This study aims to examine the tensile and bending strength of HDPE joints influenced by parameters such as TRS 930 rpm, a feed rate of 20mm/min, and variations in the Lateral Tilt Angle (LTA) of 0°, 0.5°, 1°, and 1.5°, where the tool's position is sideways relative to the tool's movement direction as the main variable. Resulting in maximum tensile strength (UTS) values of 3.15 MPa, 16.0 MPa, 16.9 MPa, and 8.59 MPa. LTA 1° produced the highest UTS, while LTA 0° produced the lowest UTS because the heat input was not sufficient to perfectly bond the welding material. The bending strength values produced were 4.25 MPa, 14.3 MPa, 4.17 MPa, and 28.8 MPa. The highest stress is found at a 1.5° variation and the lowest at a 1° variation, due to uneven heat distribution during the FSW process. Therefore, choosing the right TLA during the FSW process is key to achieving HDPE joints with good mechanical strength

Keywords

Friction Stir Welding, High-Density Polyethylene, Lateral Tilt Angle, Tensile Strength, Flexural Strength.

References

I. Review and M. Engineering, “Mechanical Properties of Friction Stir Welding Joining of PolyTetraFluoroEthylene,” vol. 14, no. April, pp. 253–257, 2020.

M. E. Abdullah, G. Fan, J. Tomk, and H. Aghajani, “Investigation on polypropylene friction stir joint : effects of tool tilt angle on heat flux , material flow and defect formation,” 2023, doi: 10.1016/j.jmrt.2023.01.028.

A. Muchhadiya et al., “Optimization of friction stir welding process parameters for HDPE sheets using satisfaction function approach,” Indian J. Eng. Mater. Sci., vol. 31, no. 1, pp. 58–66, 2024, doi: 10.56042/ijems.v31i1.561.

S. Eslami, J. F. Miranda, L. Mourão, P. J. Tavares, and P. M. G. P. Moreira, “Polyethylene friction stir welding parameter optimization and temperature characterization,” Int. J. Adv. Manuf. Technol., vol. 99, no. 1–4, pp. 127–136, 2018, doi: 10.1007/s00170-018-2504-x.

Sugiarto, M. S. Ma’arif, A. Wahjudi, and M. I. Yozianto, “Analysis of Friction Stir Welding Joints on High Density Polyethylene (Hdpe) Due To Change in Material Temperature and Spindle Rotation,” MM Sci. J., vol. 2024, pp. 7848–7854, 2024, doi: 10.17973/MMSJ.2024_12_2024120.

M. S. Javadi, M. V. Ehteshamfar, and H. Adibi, “A comprehensive analysis and prediction of the effect of groove shape and volume fraction of multi-walled carbon nanotubes on the polymer 3D-printed parts in the friction stir welding process,” Polym. Test., vol. 117, no. September 2022, p. 107844, Jan. 2023, doi: 10.1016/j.polymertesting.2022.107844.

and S. A. H. Hazim H. Abdulkadhum1,4, Sajed Abdul-khider2, “Mechanical behavior of friction stir welded high- density polyethylene sheets Mechanical behavior of friction stir welded high-density polyethylene sheets”, doi: 10.1088/1757-899X/671/1/012030.

N. Vidakis, M. Petousis, C. David, D. Sagris, N. Mountakis, and A. Moutsopoulou, “The impact of process parameters and pin-to-shoulder ratio in FSW of polycarbonate: welding forces and critical quality indicators,” Int. J. Adv. Manuf. Technol., vol. 130, no. 11–12, pp. 5457–5477, 2024, doi: 10.1007/s00170-024-13033-9.

A. W. Nugroho, A. Arifin, M. R. Imbaraga, and M. B. N. Rahman, “The Effect of Tool Rotational Speed and Welding Configuration on the Mechanical Properties of High Density Polyethylene (HDPE) Plate Friction Stir Welded Joint,” Semesta Tek., vol. 27, no. 1, pp. 66–80, 2024, doi: 10.18196/st.v27i1.22182.

S. Ramesh Babu, S. R. K. Hudgikar, and Y. Poornachandra Sekhar, “Experimental Investigation on Friction Stir Welding of HDPE Reinforced with SiC and Al and Taguchi-Based Optimization,” Lect. Notes Mech. Eng., no. October, pp. 929–939, 2020, doi: 10.1007/978-981-15-1201-8_99.

“Enhancing The Efficiency of the Friction Stir Welding Joint for Low-Density Polyethylene Sheets by Adding Alumina Powder,” vol. 3, no. 8, 2023.

M. A. R. Pereira, A. M. Amaro, and P. N. B. Reis, “Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency — A Critical Review,” 2021.

A. Chandrashekar, B. S. A. Kumar, and H. N. Reddappa, “Friction Stir Welding : Tool Material and Geometry,” vol. 6, no. 1, pp. 16–20.

A. Muchhadiya, S. Kumari, D. Bandhu, K. Abhishek, and J. J. Vora, “Elucidating the Effect of Friction Stir Welding Variables on HDPE Sheets Using Grey Integrated with Fuzzy: Experimental Investigation and Parametric Optimization,” Jom, vol. 75, no. 7, pp. 2684–2692, 2023, doi: 10.1007/s11837-023-05839-x.

J. Y. Sheikh-Ahmad, D. S. Ali, S. Deveci, F. Almaskari, and F. Jarrar, “Friction stir welding of high density polyethylene—Carbon black composite,” J. Mater. Process. Technol., vol. 264, no. September 2018, pp. 402–413, 2019, doi: 10.1016/j.jmatprotec.2018.09.033.

F. Lambiase, H. A. Derazkola, and A. Simchi, “Friction Stir Welding and Friction Spot Stir Welding,” 2020.

H. I. Khalaf et al., “The Effects of Pin Profile on HDPE Thermomechanical Phenomena during FSW,” Polymers (Basel)., vol. 14, no. 21, 2022, doi: 10.3390/polym14214632.

A. A. Barakat, B. M. Darras, M. A. Nazzal, and A. A. Ahmed, “A Comprehensive Technical Review of the Friction Stir Welding of Metal-to-Polymer Hybrid Structures,” 2023.

A. Alhourani, J. Sheikh-Ahmad, F. Almaskari, K. Khan, S. Deveci, and I. Barsoum, “Thermal modeling of friction stir welding of thick high-density polyethylene plates,” J. Mater. Res. Technol., vol. 28, no. November 2023, pp. 4186–4198, 2024, doi: 10.1016/j.jmrt.2024.01.044.

B. Ahmad, F. Almaskari, J. Sheikh-ahmad, S. Deveci, and K. Khan, “Thermomechanical Modeling of Material Flow and Weld Quality in the Friction Stir Welding of High-Density Polyethylene,” 2023.

K. Raza, M. Shamir, M. K. A. Qureshi, A. S. Shaikh, and M. Zain-ul-abdein, “On the friction stir welding, tool design optimization, and strain rate-dependent mechanical properties of HDPE–ceramic composite joints,” J. Thermoplast. Compos. Mater., vol. 31, no. 3, pp. 291–310, 2018, doi: 10.1177/0892705717697779.

G. Fan, J. Tomków, M. E. Abdullah, and H. A. Derazkola, “Investigation on polypropylene friction stir joint: effects of tool tilt angle on heat flux, material flow and defect formation,” J. Mater. Res. Technol., vol. 23, pp. 715–729, 2023, doi: 10.1016/j.jmrt.2023.01.028.

B. Meyghani and M. Awang, “The Influence of the Tool Tilt Angle on the Heat Generation and the Material Behavior in Friction Stir Welding (FSW),” Metals (Basel)., vol. 12, no. 11, 2022, doi: 10.3390/met12111837.

N. Dialami, M. Cervera, and M. Chiumenti, “Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding,” Metals (Basel)., vol. 9, no. 1, 2019, doi: 10.3390/met9010028.

M. Badri, D. S. Arief, A. Pahlevi, T. Mesin, and U. Riau, “Pengaruh kedalaman pin terhadap sambungan friction stir welding pelat HDPE,” pp. 534–539.

H. M. Kuhbanani, H. Yasemi, and H. A. Derazkola, “Effects of Tool Tilt Angle and Plunge Depth on Properties of Polycarbonate FSW Joint,” vol. 7, no. 4, pp. 41–55, 2019.

Y. Huang et al., “Friction stir welding/processing of polymers and polymer matrix composites,” Compos. Part A Appl. Sci. Manuf., vol. 105, pp. 235–257, 2018, doi: 10.1016/j.compositesa.2017.12.005.

D. Mishra, S. K. Sahu, R. P. Mahto, S. K. Pal, and K. Pal, Strengthening and Joining by Plastic Deformation, no. July 2018. Springer Singapore, 2019. doi: 10.1007/978-981-13-0378-4.

A. I. Albannai, “Review The Common Defects In Friction Stir Welding,” Int. J. Sci. Technol. Res., vol. 9, no. 11, pp. 316–329, 2020, [Online]. Available: www.ijstr.org

S. Kumar, T. Medhi, and B. S. Roy, Friction stir welding of thermoplastic composites, no. January. Springer Singapore, 2019. doi: 10.1007/978-981-13-6412-9_21.

D638, A.S (2010) Standard test method for tensile properties of plastics. ASTM International. https://doi.org/10.1520/d0638-14

ASTM International, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM Standard D790-17, West Conshohocken, PA, USA: ASTM International, 2021. [Online]. Available: https://doi.org/10.1520/D0790-17

Article Metrics

Abstract view: 0 times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.