Klasifikasi Berita Hoaks Pasca Pemilihan Umum Presiden Dan Wakil Presiden Republik Indonesia Tahun 2024 Menggunakan Algoritma K-Nearest Neighbour

Dennis Fitri Salsabilla Arianti, Ulfi Saidata Aesyi, Arif Himawan

Submitted : 2024-09-25, Published : 2025-05-20.

Abstract

In the 2024 election, widely celebrated as a festival of democracy, the spread of hoax news through social media has become a significant concern. A total of 203 hoax issues were identified, resulting in the spread of 2,882 hoax contents across various websites. A survey by Katadata Insight Center (KIC) revealed that between 30% to 60% of Indonesians were exposed to such hoaxes, with only 21% to 36% of them able to accurately discern whether the news was factual or a hoax. This research aims to develop a model using the K-Nearest Neighbour (KNN) algorithm to evaluate the accuracy and reliability of news from various Indonesian news websites through machine learning-based classification techniques. By categorizing news into potentially factual and potentially hoax categories, this study seeks to provide insights into which news pages are more likely to present factual information. The method employed involves Term Frequency-Inverse Document Frequency (TF-IDF) word weighting combined with KNN modeling, using Euclidean distance for calculation. The KNN model achieved a training accuracy of 0.90 and a testing accuracy of 0.88. The findings indicate that news sites such as detik.com, okezone.com, liputan6.com, and cnnindonesia.com demonstrate higher accuracy in the news they present. The use of the KNN method successfully identified probabilities of factual and hoax potential across news websites, including kompas.com, liputan6.com, detiknews.com, antaranews.com, cnnindonesia.com, okezone.com, sindonews.com, kumparan.com, pikiranrakyat.com, and wartatransparansi.com

Keywords

K-Nearest Neighbour; TF-IDF; Classification News; Election 2024

References

D. A. Nugroho and R. M. Sukmariningsih, “PERANAN KOMISI PEMILIHAN UMUM DALAM MEWUJUDKAN PEMILU YANG DEMOKRATIS,” Jurnal JURISTIC, vol. 1, no. 01, p. 22, Mar. 2020, doi: 10.35973/jrs.v1i01.1449.

B. Imran, M. Karim, and N. Ningsih, “KLASIFIKASI BERITA HOAX TERKAIT PEMILIHAN UMUM PRESIDEN REPUBLIK INDONESIA TAHUN 2024 MENGGUNAKAN NAÏVE BAYES DAN SVM,” vol. 20, pp. 1–9, Jan. 2024, doi: 10.20884/s2v0sq74.

Google Trends, “Analisis Kueri Pemilu,” https://trends.google.co.id/.

Biro Humas Kementerian Kominfo e-mail: humas@mail.kominfo.go.id, “Jaga Ruang Digital, Menkominfo: Kami Tangani 203 Isu Hoaks Pemilu 2024,” https://www.komdigi.go.id/berita/siaran-pers/detail/siaran-pers-no-03-hm-kominfo-01-2024-tentang-jaga-ruang-digital-menkominfo-kami-tangani-203-isu-hoaks-pemilu-2024.

Fajri. N, “Hoaks Merajalela? Jangan Sampai Kamu Jadi Korbannya,” djkn.kemenkeu.go.id.

S. Zhang and J. Li, “KNN Classification With One-Step Computation,” IEEE Trans Knowl Data Eng, vol. 35, no. 3, pp. 2711–2723, 2023, doi: 10.1109/TKDE.2021.3119140.

K. Taha, P. D. Yoo, C. Yeun, and A. Taha, “Text Classification Techniques: A Holistic Review, Observational Analysis, and Experimental Investigation,” Big Data Mining and Analytics, vol. 8, no. 3, pp. 624–660, Jun. 2025, doi: 10.26599/BDMA.2024.9020092.

A. P. Farhan and F. Arif, “Pendekatan Data Mining Pada Metodologi Six Sigma untuk Perbaikan Kualitas Produk,” Itenas, 2022.

M. Djufri, “PENERAPAN TEKNIK WEB SCRAPING UNTUK PENGGALIAN POTENSI PAJAK (STUDI KASUS PADA ONLINE MARKET PLACE TOKOPEDIA, SHOPEE DAN BUKALAPAK),” Jurnal BPPK : Badan Pendidikan dan Pelatihan Keuangan, vol. 13, pp. 65–75, Dec. 2020, doi: 10.48108/jurnalbppk.v13i2.636.

N. Nofiyani and W. Wulandari, “Implementasi Electronic Data Processing Untuk meningkatkan Efektifitas dan Efisiensi Pada Text Mining,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 3, p. 1621, Jul. 2022, doi: 10.30865/mib.v6i3.4332.

E. P. Sutrisno and S. Amini, “IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR PADA ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI DIGITAL KORLANTAS POLRI,” Jakarta, 2023. Accessed: May 19, 2025. [Online]. Available: https://senafti.budiluhur.ac.id/senafti/article/view/836/543

R. A. S. MUHAMAD FADLI, “KLASIFIKASI DAN EVALUASI PERFORMA MODEL RANDOM FOREST UNTUK PREDIKSI STROKE,” Jurnal Teknik FT UMT, vol. 12, no. 2, pp. 72–80, Oct. 2023.

Kominfo, “TurnBackHoax, Komunitas Online Anti Hoax di Indonesia,” https://www.komdigi.go.id/.

Kominfo, “Dirjen IKP inginkan Portal InfoPublik dapat menyuarakan Pemerintah dan aspirasi Publik,” https://www.komdigi.go.id/.

RRI, “Mengenal Sejarah Berdirinya RRI,” rri.co.id.

Rini Hairani, “Timnas AMIN Daftarkan Gugatan Hasil Pemilu 2024 ke MK,” https://www.rri.co.id/pemilu/600861/timnas-amin-daftarkan-gugatan-hasil-pemilu-2024-ke-mk.

H. Zhou, “Research of Text Classification Based on TF-IDF and CNN-LSTM,” J Phys Conf Ser, vol. 2171, no. 1, p. 012021, Jan. 2022, doi: 10.1088/1742-6596/2171/1/012021.

K. M. Suryaningrum, “Comparison of the TF-IDF Method with the Count Vectorizer to Classify Hate Speech,” Engineering, MAthematics and Computer Science (EMACS) Journal, vol. 5, no. 2, pp. 79–83, May 2023, doi: 10.21512/emacsjournal.v5i2.9978.

I. W. S. Supriana, M. A. Raharja, and I. M. S. Bimantara, “Pengembangan Sistem Prediksi Bantuan Program Keluarga Harapan (PKH) Berbasis Machine Learning,” SINTECH (Science and Information Technology) Journal, vol. 6, no. 1, pp. 26–36, Apr. 2023, doi: 10.31598/sintechjournal.v6i1.1297.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” 2021.

Muhammad Ferian Rizky Akbari, Bayu Rahayudi, and Lailil Muflikhah, “Implementasi Deep Learningmenggunakan Algoritma EfficientDetuntuk Sistem Deteksi Kelayakan Penerima Bantuan Langsung Tunai berdasarkan Citra Rumahdi Wilayah Kabupaten Kediri,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 4, pp. 1817–1825, Apr. 2023, Accessed: May 19, 2025. [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/12596/5720

D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indonesian Journal of Data and Science, vol. 1, no. 2, pp. 39–43, Jul. 2020, doi: 10.33096/ijodas.v1i2.13.

H. Hafid, “Penerapan K-Fold Cross Validation untuk Menganalisis Kinerja Algoritma K-Nearest Neighbor pada Data Kasus Covid-19 di Indonesia.” [Online]. Available: http://www.ojs.unm.ac.id/jmathcos

C. N. Syahputri and M. S. Hasibuan, “OPTIMASI KLASIFIKASI DECISION TREE DENGAN TEKNIK PRUNING UNTUK MENGURANGI OVERFITTING,” JSiI (Jurnal Sistem Informasi), vol. 11, no. 2, pp. 87–96, Sep. 2024, doi: 10.30656/jsii.v11i2.9161.

I. W. S. Supriana, M. A. Raharja, and I. M. S. Bimantara, “Pengembangan Sistem Prediksi Bantuan Program Keluarga Harapan (PKH) Berbasis Machine Learning,” SINTECH (Science and Information Technology) Journal, vol. 6, no. 1, pp. 26–36, Apr. 2023, doi: 10.31598/sintechjournal.v6i1.1297.

P. Rahayu et al., BUKU AJAR DATA MINING. 2024.

Article Metrics

Abstract view: 66 times
Download     : 26   times Download     : 5   times

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Refbacks

  • There are currently no refbacks.